Search Journal-type in search term and press enter
Social Media-Follow Southwest Journal of Pulmonary and Critical Care on Facebook and Twitter

 Critical Care

Last 50 Critical Care Postings

(Click on title to be directed to posting, most recent listed first, CME offerings in Bold)

Tumor Lysis Syndrome from a Solitary Nonseminomatous Germ Cell Tumor
October 2017 Critical Care Case of the Month
September 2017 Critical Care Case of the Month
August 2017 Critical Care Case of the Month
Telemedicine Using Stationary Hard-Wire Audiovisual Equipment or Robotic 
   Systems in Critical Care: A Brief Review
Carotid Cavernous Fistula: A Case Study and Review
July 2017 Critical Care Case of the Month
High-Sensitivity Troponin I and the Risk of Flow Limiting Coronary Artery 
   Disease in Non-ST Elevation Acute Coronary Syndrome (NSTE-ACS)
June 2017 Critical Care Case of the Month
Clinical Performance of an Interactive Clinical Decision Support System for 
   Assessment of Plasma Lactate in Hospitalized Patients with Organ
   Dysfunction
May 2017 Critical Care Case of the Month
Management of Life Threatening Post-Partum Hemorrhage with HBOC-201 
   in a Jehovah’s Witness
Tracheal Stoma Necrosis: A Case Report
April 2017 Critical Care Case of the Month
March 2017 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: Unchain My Heart
February 2017 Critical Care Case of the Month
January 2017 Critical Care Case of the Month
December 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: A Pericardial Effusion of Uncertain 
   Significance
Corticosteroids and Influenza A associated Acute Respiratory Distress 
   Syndrome
November 2016 Critical Care Case of the Month
October 2016 Critical Care Case of the Month
September 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: Unraveling a Rapid Drop of 
   Hematocrit
Fluid Resuscitation for Septic Shock – A 50-Year Perspective:
   From Dogma to Skepticism
August 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: Complication of a Distant
   Malignancy
July 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: Now My Heart Is Still 
   Somewhat Full
June 2016 Critical Care Case of the Month
May 2016 Critical Care Case of the Month
Design of an Electronic Medical Record (EMR)-Based Clinical Decision
   Support System to Alert Clinicians to the Onset of Severe Sepsis
April 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: Two’s a Crowd
March 2016 Critical Care Case of the Month
February 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: Hungry Heart
January 2016 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: The Pleura and the Answers that 
   Lie Within
December 2015 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: 50 Ways to Line Your Liver
November 2015 Critical Care Case of the Month
Ultrasound for Critical Care Physicians: The Martian
October 2015 Critical Care Case of the Month: A Moldy But Gooey
Ultrasound for Critical Care Physicians: Shortness of Breath
September 2015 Critical Care Case of the Month: If You Don't Look, 
   You Won't Find 
August 2015 Critical Care Case of the Month: A Diagnostic Branch 
   of Medicine
Ultrasound for Critical Care Physicians: Take a Deep Breath
July 2015 Critical Care Case of the Month: An Unusual Presentation 

 

For complete critical care listings click here.

The Southwest Journal of Pulmonary and Critical Care publishes articles directed to those who treat patients in the ICU, CCU and SICU including chest physicians, surgeons, pediatricians, pharmacists/pharmacologists, anesthesiologists, critical care nurses, and other healthcare professionals. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

------------------------------------------------------------------------------------

Thursday
Oct052017

Tumor Lysis Syndrome from a Solitary Nonseminomatous Germ Cell Tumor

Brandon T. Nokes, MD1

Rodrigo Cartin-Ceba, MD2

Joseph Farmer, MD2

Alyssa B. Chapital, MD, PhD2

 

1Hospital Internal Medicine and 2Division of Critical Care

Mayo Clinic Arizona

Phoenix, AZ USA

 

Abstract

Spontaneous tumor lysis syndrome is a rare clinical entity, which typically occurs in the context of rapidly proliferating hematologic malignancies. Tumor lysis syndrome in solid organ malignancies is even rarer, and typically provoked by cytotoxic treatment regimens. We describe a case of spontaneous tumor lysis of a solitary metastatic brain lesion from a nonseminomatous germ cell tumor. This case is unique in that spontaneous tumor lysis from a brain metastasis of a solid organ malignancy has never been reported, and spontaneous tumor lysis in a nonseminomatous germ cell tumor is exceedingly rare.

Case Report

A 31-year-old gentleman was admitted to our facility after developing status epilepticus and consequently, being involved in a MVA. Imaging revealed a 3.5cm right frontal brain lesion with surrounding edema, but no other acute intracranial pathology. The patient was intubated, sedated, and transferred to critical care for further treatment. His past medical history was notable for primary surgical resection of a T1N0M0 nonseminomatous germ cell tumor in March 2015, followed by detection of a 2.5cm lung nodule in September 2015, with concurrent beta-human chorionic gonadotropin (HCG) and alpha-fetoprotein (AFP) biochemical recurrence. He underwent 4 cycles of bleomycin, etoposide, and cisplatin (BEP).

A head CT revealed a 4cm x 3.5cm right frontal lesion with surrounding edema (Figure 1).

Figure 1. T2 Axial MRI showing 4 cm x 3.5 cm lesion with associated vasogenic edema.

Dexamethasone 4mg every 6 hours was initiated for treatment of vasogenic edema. Laboratory studies were significant for a white blood cell count elevated at 19.3 x109/L, international normalized ratio (INR) 1.34, partial thromboplastin time (PTT) 26.2 seconds, and prothrombin time (PT) 16.1 seconds. Plasma lactate was elevated at 30.6mmol/L. Bicarbonate was 6mmol/L with an anion gap of 45, glucose 186mg/dL, BUN 15.2mg/dL, and creatinine was 2.0mg/dL. Urine drug screen was negative. His AFP was 7.4ng/mL and beta-HCG was 13IU/L. Over the following 24 hours, the patient experienced decreased urine output. A bedside ultrasound reveals normal IVC collapse. Further lab assessment revealed a CK within normal limits and a urinalysis showed the presence of 11 to 20 RBCs, 4 to 10 WBCs and some granular casts as well as trace protein. His phosphorus was 8.9, calcium 8.1, and uric acid was 13mg/dL. His lactate dehydrogenase levels were also elevated at 271 U/L.

Due to concern of tumor lysis syndrome, the patient was initiated on rasburicase, which was followed by maintenance allopurinol 300mg daily. However, due to worsening renal failure, the patient was started on hemodialysis. He was taken to the operating room the following morning for immediate surgical resection of his brain metastasis; no evidence of residual disease was seen on follow-up imaging (Figure 2).

Figure 2. T2 Axial MRI status post a right frontal craniotomy and gross total resection of the previously noted mass. Small amount of blood noted within the resection cavity. Residual vasogenic edema persists in the white matter surrounding the operative bed.

Repeat chest, abdomen and pelvis imaging did not show any additional metastatic lesions.

In the following days, he was subsequently extubated, transferred to the floor, and continued hemodialysis, eventually fully recovering his renal function. Ultimately, he was discharged with outpatient follow-up for additional chemotherapy planning after physical rehabilitation.

Discussion

Tumor lysis syndrome (TLS) can be subdivided into laboratory TLS and clinical TLS, as defined by the Cairo-Bishop diagnostic criteria (1). Spontaneous TLS can occur in solid organ malignancies (1). TLS in solid organ malignancies is provoked by chemotherapy or radiation therapy, which creates massive cell lysis and elaboration of intracellular potassium, phosphate, and uric acid as well as hypocalcemia, which can lead to renal failure and cardiac dysrhythmias (1). LDH is also elevated. TLS can also be thought of as being provoked, either by ongoing chemotherapy or a decrease in effective circulating volume, or unprovoked. It is rare for TLS to occur in nonseminomatous germ cell tumors. Only 2 case reports have been published regarding spontaneous TLS in nonseminomatous germ cell tumors (2,3). Our case is most likely a spontaneous TLS. To date, no reports have been published regarding spontaneous TLS from a solitary brain metastasis from a nonseminomatous germ cell tumor. Further, no cases have been reported regarding tumor lysis from a solitary brain metastasis of any solid organ malignancy.

The occurrence of TLS in solid organ malignancies is thought to occur secondary to rapid cellular proliferation that exceeds the available blood supply for a tumor, leading to tumor ischemia and diffuse tumor cell necrosis. The biochemical milieu elaborated from these necrotic cells can result in end-organ pathology.

The treatment of TLS is contingent upon the rate of cancer progression and whether there is evidence of end-organ damage. Importantly and ideally, patients can be stratified into intermediate, moderate, or high-risk of developing TLS based on their malignancy type and rate of cancer progression, such that TLS may be prevented with prophylactic hydration, electrolyte monitoring and allopurinol or rasburicase (4,5). Biochemical TLS alone can be treated with IV hydration and allopurinol, a xanthine oxidase inhibitor which potentially halts TLS progression. When there is end-organ damage, rasburicase (a recombinant urate oxidase) is the first-line treatment along with aggressive hydration (5). Additional therapies are directed towards minimizing sequelae of TLS (i.e. calcium gluconate for hyperkalemia associated EKG changes or emergent dialysis for acute renal failure). There is no role for urinary alkalinization.

We were fortunate in that our patient had a great outcome, owing to early detection and aggressive intervention, and we implore our fellow physicians to be mindful of TLS as a possible clinical outcome in all malignancies, irrespective of its clinical rarity.

References

  1. Mirrakhimov AE, Ali AM, Khan M, Barbaryan A. Tumor lysis syndrome in solid tumors: an up to date review of the literature. Rare Tumors. 2014;6(2):5389. [CrossRef] [PubMed]
  2. D'Alessandro V, Greco A, Clemente C, et al. Severe spontaneous acute tumor lysis syndrome and hypoglycemia in patient with germ cell tumor. Tumori. 2010;96(6):1040-3. [PubMed]
  3. Pentheroudakis G, O'Neill VJ, Vasey P, Kaye SB. Spontaneous acute tumour lysis syndrome in patients with metastatic germ cell tumours. Report of two cases. Support Care Cancer. 2001;9(7):554-7. [CrossRef] [PubMed]
  4. Feres GA, Salluh JI, Ferreira CG, Soares M. Severe acute tumor lysis syndrome in patients with germ-cell tumors. Indian J Urol. 2008;24(4):555-7. [CrossRef] [PubMed]
  5. Coiffier B, Altman A, Pui CH, Younes A, Cairo MS. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol. 2008;26(16): 2767-78. [CrossRef] [PubMed]

Cite as: Nokes BT, Cartin-Ceba R, Farmer J, Chapital AB. Tumor lysis syndrome from a solitary nonseminomatous germ cell tumor. Southwest J Pulm Crit Care. 2017;15(4):148-50. doi: https://doi.org/10.13175/swjpcc107-17 PDF

Monday
Oct022017

October 2017 Critical Care Case of the Month

Margaret Ragland, MD1

Carolyn H. Welsh, MD1,2

 

Pulmonary Sciences and Critical Care Medicine

1University of Colorado Anschutz Medical Campus and 2VA Eastern Colorado Health Care System

Denver, Colorado USA

 

Critical Care Case of the Month CME Information

Members of the Arizona, New Mexico, Colorado and California Thoracic Societies and the Mayo Clinic are able to receive 0.25 AMA PRA Category 1 Credits™ for each case they complete. Completion of an evaluation form is required to receive credit and a link is provided on the last panel of the activity. 

0.25 AMA PRA Category 1 Credit(s)™

Estimated time to complete this activity: 0.25 hours 

Lead Author(s): Margaret Ragland, MD.  All Faculty, CME Planning Committee Members, and the CME Office Reviewers have disclosed that they do not have any relevant financial relationships with commercial interests that would constitute a conflict of interest concerning this CME activity.

Learning Objectives: As a result of completing this activity, participants will be better able to:

  1. Interpret and identify clinical practices supported by the highest quality available evidence.
  2. Establish the optimal evaluation leading to a correct diagnosis for patients with pulmonary, critical care and sleep disorders.
  3. Translate the most current clinical information into the delivery of high quality care for patients.
  4. Integrate new treatment options for patients with pulmonary, critical care and sleep related disorders.

Learning Format: Case-based, interactive online course, including mandatory assessment questions (number of questions varies by case). Please also read the Technical Requirements.

CME Sponsor: University of Arizona College of Medicine

Current Approval Period: January 1, 2017-December 31, 2018

Financial Support Received: None

 

History of Present Illness

A 42-year-old man with a history of intravenous heroin abuse and chronic hepatitis C infection presents to the emergency department (ED) with recurrent abdominal pain. The pain was dull, epigastric, and did not radiate. The pain worsened after eating, but the timing after eating that it worsened was inconsistent. He had nausea but no vomiting. His bowel movements were normal without constipation, diarrhea, or melena.   

He had presented to another ED multiple times with this same pain over the past six weeks. He does not know what the work-ups revealed, but was discharged from the emergency department each time. He received supportive care including fluids and analgesics, but the pain would always recur a few hours after returning home.

He went to a third ED a few weeks ago with bilateral testicular pain after which he was discharged home with acetaminophen for pain.

Past Medical History, Family History, and Social History

His past medical history is notable for bipolar disorder. He takes no prescribed medications and does not know his family’s medical history. He is a current every day smoker, has no history of heavy alcohol use, and uses intravenous heroin but no other recreational drugs.

Current Medications

Acetaminophen a few times a day for abdominal pain.

Review of Systems

He notes subjective fevers, poor appetite, and an 8 pound unintentional weight loss over the past six weeks.

Physical Exam

Vital signs are notable for hypertension to 158/91 mm Hg. Other vitals are within normal limits.

On exam, he is an ill appearing middle aged man who appears very uncomfortable. His abdomen is nondistended. He has normal bowel sounds and epigastric tenderness with a tender, smooth liver edge palpable just under the costal margin. He has decreased sensation to light touch in his toes with no skin changes. Toes are warm with capillary refill less than two seconds.

Laboratory Evaluation

CBC reveals a leukocytosis to 23,600 cells/mcL with 80% neutrophils; eosinophils are normal. Hemoglobin and platelet counts are normal. Sodium is 128 mmol/L with a bicarbonate of 30 mmol/L and creatinine of 0.64 mmol/L. AST 155 U/L, ALT 137 U/L, with a total bilirubin 1.1 mmol/L. Albumin is 1.8 g/L. INR is 1.9. Urinalysis showed 1+ protein.

What additional laboratory evaluation is indicated at this time? (Click on the correct answer to proceed to the second of six pages)

  1. Acetaminophen level
  2. Hepatitis B viral (HBV) serologies
  3. Lipase
  4. 1 and 3
  5. All of the above

Cite as: Ragland M, Welsh CH. October 2017 critical care case of the month. Southwest J Pulm Crit Care. 2017;15(4):131-7. doi: https://doi.org/10.13175/swjpcc113-17 PDF 

Saturday
Sep022017

September 2017 Critical Care Case of the Month

James T. Dean III, MD

Tyler R. Shackelford, DO

Michel Boivin, MD

Division of Pulmonary, Critical Care and Sleep Medicine

University of New Mexico School of Medicine

Albuquerque, NM USA

 

Critical Care Case of the Month CME Information

Members of the Arizona, New Mexico, Colorado and California Thoracic Societies and the Mayo Clinic are able to receive 0.25 AMA PRA Category 1 Credits™ for each case they complete. Completion of an evaluation form is required to receive credit and a link is provided on the last panel of the activity. 

0.25 AMA PRA Category 1 Credit(s)™

Estimated time to complete this activity: 0.25 hours 

Lead Author(s): James T. Dean III, MD.  All Faculty, CME Planning Committee Members, and the CME Office Reviewers have disclosed that they do not have any relevant financial relationships with commercial interests that would constitute a conflict of interest concerning this CME activity.

Learning Objectives: As a result of completing this activity, participants will be better able to:

  1. Interpret and identify clinical practices supported by the highest quality available evidence.
  2. Establish the optimal evaluation leading to a correct diagnosis for patients with pulmonary, critical care and sleep disorders.
  3. Translate the most current clinical information into the delivery of high quality care for patients.
  4. Integrate new treatment options for patients with pulmonary, critical care and sleep related disorders.

Learning Format: Case-based, interactive online course, including mandatory assessment questions (number of questions varies by case). Please also read the Technical Requirements.

CME Sponsor: University of Arizona College of Medicine

Current Approval Period: January 1, 2017-December 31, 2018

Financial Support Received: None

 

A 73-year-old man presented with a three-day history of diffuse abdominal pain, decreased urine output, nausea and vomiting. His past medical history included diabetes, coronary artery disease, hypertension and chronic back pain. The patient reported being started on hydrochlorothiazide, furosemide, pregabalin and diclofenac within the last week in addition to his long-standing metformin prescription.

Initial vitals were significant for tachypnea, tachycardia to 120 bpm, hypothermia to 35ºC and hypotension with a blood pressure of 70/40 mm Hg. Physical exam was remarkable for bilateral lung wheezing and significant respiratory distress. Laboratory examination was concerning for a pH of 6.85, pCO2 of < 5mmHg, serum lactate of 27mmol/l, WBC of 15.6 x106 cells/cc and a serum creatinine of 8.36 mg/dl. A chest X-ray showed evidence of mild pulmonary edema and a CT of the abdomen did not show any acute pathology.

What is the most likely etiology of the patient’s severe acidosis? (Click on the correct answer to proceed to the second of four pages)

  1. Diabetic ketoacidosis
  2. Ethylene glycol poisoning
  3. Metformin-associated lactic acidosis
  4. Septic shock

Cite as: Dean JT III, Shackelford TR, Boivin M. September 2017 critical care case of the month. Southwest J Pulm Crit Care. 2017;15(3):100-3. doi: https://doi.org/10.13175/swjpcc101-17 PDF

Wednesday
Aug022017

August 2017 Critical Care Case of the Month

Kolene E. Bailey, MD1

Carolyn Welsh, MD1,2

 

Pulmonary Sciences and Critical Care Medicine

1University of Colorado Anschutz Medical Campus and 2VA Eastern Colorado Health Care System

Denver, CO USA

  

History of Present Illness

The patient is a 26-year-old woman with who was admitted to the hospital for second cycle of chemotherapy for a large mediastinal synovial sarcoma diagnosed 2 months prior to admission. Symptoms started 6 months prior to presentation with cough. She related the cough to her cigarette smoking and quit. Upon persistence of symptoms, she was evaluated by her physician who ordered imaging. Work-up revealed a large 12 x 14cm synovial sarcoma with internal necrosis that encased the subclavian artery, and descending thoracic aorta, inseparable from pericardium and left atrium. It also encased the pulmonary veins, pulmonary arteries, and airways. Malignancy was complicated by extensive left upper extremity DVT for which she has been on anticoagulation since her last admission, SVC syndrome, and severe mucositis.

Past Medical History, Family History, and Social History
She has a past medical history significant for malignant melanoma surgically resected 7 years previously, as well as generalized an anxiety disorder.

Her family history includes a maternal grandfather with esophageal cancer and maternal great-grandmother with pancreatic cancer. She is single and lives with her parents. She is a former 8 pack year smoker, and daily edible marijuana user. She worked as a hairdresser, but is now unable to work.

Current Medications:

  • Escitalopram (Lexapro) 10mg PO daily
  • Dalteparin
  • Oxycontin 10mg PO BID + Oxycodone 5-10mg PO Q4H PRN pain
  • Antiemetics: Compazine PRN, Ondansetron PRN, dexamethasone 4mg BID for 3 days following chemotherapy
  • Lorazepam 1mg PO Q4H PRN anxiety
  • Pegfilgastrim after chemotherapy
  • Senna 3 tabs in AM, 2 tabs in PM

Hospital Course

After starting cycle #2 of chemotherapy (doxorubicin, ifosfamide, and mesna), she experienced significant nausea and anxiety and was prescribed scheduled ondansetron/dexamethasone, prochlorperazine, promethazine and lorazepam. The night of hospital day #2, her providers noticed altered mental status and unusual behavior. They asked her draw a clock which is shown (Figure 1).

Figure 1. Clock drawn by patient.

What is on your differential diagnosis for this patient’s altered mental status? (Click on the correct answer to proceed to the second of five pages)

  1. Delirium
  2. Ifosfamide-induced encephalopathy
  3. Toxic-metabolic encephalopathy secondary to the medications received
  4. 1 and 3
  5. All of the above

Cite as: Bailey KE, Welsh C. August 2017 critical care case of the month. Southwest J Pulm Crit Care. 2017;15(2):61-6. doi: https://doi.org/10.13175/swjpcc094-17 PDF

Thursday
Jul272017

Telemedicine Using Stationary Hard-Wire Audiovisual Equipment or Robotic Systems in Critical Care: A Brief Review

Nidhi S. Nikhanj, MD1,2

Robert A. Raschke, MD1,2

Robert Groves, MD1,2

Rodrigo Cavallazzi, MD3

Ken S. Ramos, MD1

 

1Arizona College of Medicine-Phoenix

Phoenix, AZ USA

2Banner University Medical Center-Phoenix

Phoenix, AZ USA

3University of Louisville School of Medicine

Louisville, KY USA

 

A shortage of critical care physicians in the United States has been widely recognized and reported (1). Most intensive care units (ICUs) do no not have a formally-trained intensivist in their staff despite compelling evidence that high-intensity intensivist staffing leads to better patient outcomes (1,2). Critical care telemedicine is one potential solution that has expanded rapidly since its inception in 2000 (3). In its simplest form, telemedicine leverages audiovisual technology and the electronic medical record to provide remote two-way communication between a physician and a patient. Current telemedicine models differ by the type of hardware facilitating remote audiovisual interaction, the location of the provider, and the type of patient-care service provided. We collectively have experience with several of these models and feel that future telemedicine programs will likely integrate the most advantageous aspects of each with an increasing role for telemedicine robotics.

The dominant current model for providing critical care telemedicine in large healthcare systems utilizes stationary hard-wired audiovisual equipment linking each ICU room to a centralized control location (4). Typically, this control center provides surveillance of a large number of patients using computerized decision support software linked to the EMR – a single physician can cover approximately 100 patients with the appropriate support infrastructure. This model also provides the ability to remotely “round” on ICU patients and to quickly respond to questions posed by nursing or medical emergencies across a broad geographic range. This approach requires a high up-front capital cost approximated at 50-100K per hospital bed covered (5).

Data supporting the benefit of this model of ICU telemedicine has been mixed, but several considerations are important in appraising the literature. A double-blinded RCT for ICU telemedicine intervention is not feasible. Heterogeneity in clinical workflows and staffing models across the country should be considered when assessing the internal validity and generalizability of published studies. For instance, Thomas and colleagues concluded that a telemedicine ICU service resulted in no overall improvement in mortality or length of stay (LOS) (6), but the tele-intensivists in the study were limited by only being allowed to intervene in the care of less than a third of the study patients. Nassar and colleagues published a negative study in a healthcare system in which resident and attending physicians were already available in-house for overnight patient care (7). Likely, the potential benefit of a telemedicine program can be optimized in a clinical setting in which other physicians are not physically available at the locality 24/7 and telemedicine intensivists are allowed to appropriately intervene when indicated.

Despite these difficulties, there is a growing body of evidence that suggests a centralized telemedicine ICU model is effective in a number of areas including: improvements in compliance with evidence based practices (8, 9), increased job satisfaction of ICU nurses (10) and reduction in the cost of care of the sickest patients in the institutional setting (11). Other studies suggest that a telemedicine platform can reduce mortality and LOS by allowing for earlier intensivist involvement, promoting adherence to best practices, shortening alarm response times and improving access to ICU performance data that can be used to drive continuous quality improvement (12,13).

Commercially available telemedicine robots are mobile units equipped with a digital camera, microphone and monitor screen that provides two-way audiovisual communications with the control center via a wireless internet connection (14). Telemedicine robots can be operated with much lower initial capital costs - for instance, an ICU group at a large acute care hospital might provide coverage at a rural healthcare setting using a single robot (15). Such a system can be used for daily rounding or for reactive consultation. Like hard-wired systems, telemedicine robots have been shown to be well accepted by providers (16) and patients (17), and their use has been associated with reduced ICU length-of-stay and decreased delay in response to clinical events by the physician (18).

Telemedicine robotic systems have several disadvantages – they do not provide large-scale EMR surveillance leveraging computerized decision support logic and they are significantly less efficient than hard-wired systems for high-volume patient care since they have to physically relocate from patient room to patient room.  However, unique capabilities of telemedicine robots are being developed that cannot be duplicated by hard-wired systems. Telemedicine robots can be equipped with a digital stethoscope (19). They can perform physical examination elements that require tactile communication – such as the determination of the Glasgow coma scale (20). A robotic arm can be used to remotely perform point-of-care ultrasonography. This has been successfully operationalized for cardiac, abdomino-pelvic, and vascular indications (21,22). Telemedicine robots have been developed that can place peripheral or central venous catheters (23). The development of surgical robots that incorporate tomographic capability and that can perform battlefield stabilization procedures in either autonomous or teleoperative modes (24) provide a glimpse of the potential for telemedicine robots in the ICU.

Although healthcare systems currently implementing telemedicine services will likely choose either a hard-wired or a robotic model – largely based on cost and the volume of required services - we believe the optimal telemedicine system of the future will and should incorporate both technologies. Real-time data acquisition coupled with ready access to timely interventions constitute the basis for faster deployment of precision health care strategies in the ICU setting.

References

  1. Kelley MA, Angus D, Chalfin DB, Crandall ED, et al. The critical care crisis in the United States: A report from the profession. Chest. 2004;125:1514-7. [CrossRef] [PubMed]
  2. Pronovost PJ, Angus DC, Dorman T, Robinson KA, et al. Physician staffing patterns and clinical outcomes in critically ill patients. JAMA. 2002;288:2151-62. [CrossRef] [PubMed]
  3. Rosenfeld BA, Dorman T, Breslow MJ, et al. Intensive care unit telemedicine: alternate paradigm for providing continuous intensivist care. Crit Care Med. 2000;28:3925-31. [CrossRef] [PubMed]
  4. Kahn JM, Cicero BD, Wallace DJ, Iwashyna TJ. Adoption of intensive care unit telemedicine in the United States. Crit Care Med. 2014;42:362-8. [CrossRef] [PubMed]
  5. Kumar G, Falk DM, Bonello RS, et al. The costs of critical care telemedicine programs: A systematic review and analysis. Chest. 2013;143:19-29. [CrossRef] [PubMed]
  6. Thomas EJ, Lucke JF, Wueste L. Association of telemedicine for remote monitoring of intensive care patients weith mortality, complications and length of stay. JAMA. 2009;302:2671-78. [CrossRef] [PubMed]
  7. Nassar BS, Vaughan MS, Jiang L, Reisinger HS, et al. Impact of an intensive care unit telemedicine program on patient outcomes in an integrated health care system. JAMA Intern Med. 2014;174:1160-7. [CrossRef] [PubMed]
  8. Ventataraman R, Ramakrishnan N. Outcomes related to telemedicine in the intensive care Unit. Crit Care Clinics 2015;31:225-37. [CrossRef] [PubMed]
  9. Youn BA. ICU process improvement using telemedicine to enhance compliance and documentation for the ventilator bundle. Chest. 2006;130:(meeting abstracts) 226S-c.
  10. Hoonakker PL, Carayon P, McGuire K, et al. Motivation and job satisfaction of tele-ICU nurses. J Crit Care. 2013;28:890-901. [CrossRef] [PubMed]
  11. Franzini L, Sail KR, Thomas EJ, et al. Costs and cost-effectiveness of a telemedicine intensive care unit program in six intensive care units in a large health care system. J Crit Care. 2011;26:329e1-6. [CrossRef] [PubMed]
  12. Lilly CM, Cody S, Zhao H. Hospital mortality, length of stay and preventable complications among critically ill patients before and after tele-ICU reengineering of critical care processes. JAMA. 2011;305:2175-83. [CrossRef] [PubMed]
  13. Lilly CM, Zubrow MT, Kempner KM, Reynolds H, et al. Critical Care telemedicine: Evolution and state of the art. Crit Care Med. 2014;42:2429-36. [CrossRef] [PubMed]
  14. Chung KK, Grathwohl KW, Poropatich RK, Wolf SE, et al. Robotic telepresence: Past present and future. Journal of Cardiothoracic and Vascular Anesthesia. 2007;21:593-6. [CrossRef] [PubMed]
  15. Murray C, Ortiz E, Kubin C. Application of a robot for critical care rounding in small rural hospitals. Crit Care Nurs Clin North Am. 2014;26:477-85. [CrossRef] [PubMed]
  16. Reynolds EM, Grujovski A, Wright T, Foster M, Reynolds HN. Utilization of robotic remote presence technology within North American intensive care units. Telemedicine and e-health. 2012;18:507-15. [CrossRef] [PubMed]
  17. Sucher JF, Todd SR, Jones SL, Throckmorton T, et al. Robotic telepresence: A helpful adjunct that is viewed favorably by critically ill surgical patients. Am J Surg. 2011;202:843-7. [CrossRef] [PubMed]
  18. Vespa PM, Miller C, Hu X, Nenov V, et al. Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care. Surgical Neurology. 2007;67:331-7. [CrossRef] [PubMed]
  19. Lakhe A, Sodhi I, Warrier J, Sinha V. Development of digital stethoscope for telemedicine. J Med Eng Technol. 2016;40:20-4. [CrossRef] [PubMed]
  20. Adcock AK, Kosiorek H, Parich P, Chauncey A, Wu Q, Demaerschalk BM. Reliability of robotic telemedicine for assessing critically ill patients with the full outline of unresponsiveness score and Glasgow coma scale. Telemed J E Health. 2017 Jan 13. [CrossRef] [PubMed]
  21. Avgousti S, Panayides AS, Jossif AP, Christoforou EG, et al. Cardiac ultrasonography over 4G wireless networks using a tele-operated robot. Healthc Technol Lett. 2016;3:212-7. [CrossRef] [PubMed]
  22. Georgescu M, Sacccomandi A, Baudron B, Arbeille PL. Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: A 1-year study. Telemed J E Health. 2016;22:276-81. [CrossRef] [PubMed]
  23. Kobayashi Y, Hong J, Hamano R, Okada K, Fujie MG, Hashizume M. Development of a needle insertion manipulator for central venous catheterization. Int J Med Robot. 2012;8(1):34–44. [CrossRef] [PubMed]
  24. Garcia P, Rosen J, Kapoor C, Noakes M, et al. Trauma Pod: a semi-automated telerobotic surgical system. Int J Med Robot. 2009;5:136-46. [CrossRef] [PubMed]

Cite as: Nikhanj NS, Raschke RA, Groves R, Cavallazzi R, Ramos KS. Telemedicine using stationary hard-wire audiovisual equipment or robotic systems in critical care: a brief review. Southwest J Pulm Crit Care. 2017;15(1):50-3. doi: https://doi.org/10.13175/swjpcc087-17 PDF