Search Journal-type in search term and press enter
Southwest Pulmonary and Critical Care Fellowships
In Memoriam
Social Media

Imaging

Last 50 Imaging Postings

(Most recent listed first. Click on title to be directed to the manuscript.)

May 2025 Medical Image of the Month: Aspirated Dental Screw
April 2025 Medical Image of the Month: An Unfortunate Case of Mimicry
March 2025 Medical Image of the Month: An Unusual Case of Pulmonary
   Infarction
February 2025 Medical Image of the Month: Unexpected Complications of
   Transjugular Intrahepatic Portosystemic Shunt (TIPS) 
February 2025 Imaging Case of the Month: A Wolf in Sheep’s Clothing
January 2025 Medical Image of the Month: Psoriasis with Pulmonary
   Involvement
December 2024 Medical Image of the Month: An Endobronchial Tumor
November 2024 Medical Image of the Month: A Case of Short Telomeres
November 2024 Imaging Case of the Month: A Recurring Issue
October 2024 Medical Image of the Month: Lofgren syndrome with Erythema
   Nodosum
September 2024 Medical Image of the Month: A Curious Case of Nasal
   Congestion
August 2024 Image of the Month: Lymphomatoid Granulomatosis
August 2024 Imaging Case of the Month: An Unexplained Pleural Effusion
July 2024 Medical Image of the Month: Vocal Cord Paralysis on PET-CT 
June 2024 Medical Image of the Month: A 76-year-old Man Presenting with
   Acute Hoarseness
May 2024 Medical Image of the Month: Hereditary Hemorrhagic
   Telangiectasia in a Patient on Veno-Arterial Extra-Corporeal Membrane
   Oxygenation
May 2024 Imaging Case of the Month: Nothing Is Guaranteed
April 2024 Medical Image of the Month: Wind Instruments Player Exhibiting
   Exceptional Pulmonary Function
March 2024 Medical Image of the Month: Sputum Cytology in Patients with
   Suspected Lung Malignancy Presenting with Acute Hypoxic Respiratory
   Failure
February 2024 Medical Image of the Month: Pulmonary Alveolar Proteinosis
   in Myelodysplastic Syndrome
February 2024 Imaging Case of the Month: Connecting Some Unusual Dots
January 2024 Medical Image of the Month: Polyangiitis Overlap Syndrome
   (POS) Mimicking Fungal Pneumonia 
December 2023 Medical Image of the Month: Metastatic Pulmonary
   Calcifications in End-Stage Renal Disease 
November 2023 Medical Image of the Month: Obstructive Uropathy
   Extremis
November 2023 Imaging Case of the Month: A Crazy Association
October 2023 Medical Image of the Month: Swyer-James-MacLeod
   Syndrome
September 2023 Medical Image of the Month: Aspergillus Presenting as a
   Pulmonary Nodule in an Immunocompetent Patient
August 2023 Medical Image of the Month: Cannonball Metastases from
   Metastatic Melanoma
August 2023 Imaging Case of the Month: Chew Your Food Carefully
July 2023 Medical Image of the Month: Primary Tracheal Lymphoma
June 2023 Medical Image of the Month: Solitary Fibrous Tumor of the Pleura
May 2023 Medical Image of the Month: Methamphetamine Inhalation
   Leading to Cavitary Pneumonia and Pleural Complications
April 2023 Medical Image of the Month: Atrial Myxoma in the setting of
   Raynaud’s Phenomenon: Early Echocardiography and Management of
   Thrombotic Disease
April 2023 Imaging Case of the Month: Large Impact from a Small Lesion
March 2023 Medical Image of the Month: Spontaneous Pneumomediastinum
   as a Complication of Marijuana Smoking Due to Müller's Maneuvers
February 2023 Medical Image of the Month: Reversed Halo Sign in the
   Setting of a Neutropenic Patient with Angioinvasive Pulmonary
   Zygomycosis
January 2023 Medical Image of the Month: Abnormal Sleep Study and PFT
   with Supine Challenge Related to Idiopathic Hemidiaphragmatic Paralysis
December 2022 Medical Image of the Month: Bronchoesophageal Fistula in
   the Setting of Pulmonary Actinomycosis
November 2022 Medical Image of the Month: COVID-19 Infection
   Presenting as Spontaneous Subcapsular Hematoma of the Kidney
November 2022 Imaging Case of the Month: Out of Place in the Thorax
October 2022 Medical Image of the Month: Infected Dasatinib Induced
   Chylothorax-The First Reported Case 
September 2022 Medical Image of the Month: Epiglottic Calcification
Medical Image of the Month: An Unexpected Cause of Chronic Cough
August 2022 Imaging Case of the Month: It’s All About Location
July 2022 Medical Image of the Month: Pulmonary Nodule in the
   Setting of Pyoderma Gangrenosum (PG) 
June 2022 Medical Image of the Month: A Hard Image to Swallow
May 2022 Medical Image of the Month: Pectus Excavatum
May 2022 Imaging Case of the Month: Asymmetric Apical Opacity–
   Diagnostic Considerations
April 2022 Medical Image of the Month: COVID Pericarditis
March 2022 Medical Image of the Month: Pulmonary Nodules in the
   Setting of Diffuse Idiopathic Pulmonary NeuroEndocrine Cell Hyperplasia
   (DIPNECH) 
February 2022 Medical Image of the Month: Multifocal Micronodular
   Pneumocyte Hyperplasia in the Setting of Tuberous Sclerosis
February 2022 Imaging Case of the Month: Between A Rock and a
   Hard Place
January 2022 Medical Image of the Month: Bronchial Obstruction
   Due to Pledget in Airway Following Foregut Cyst Resection
December 2021 Medical Image of the Month: Aspirated Dental Implant
Medical Image of the Month: Cavitating Pseudomonas
   aeruginosa Pneumonia
November 2021 Imaging Case of the Month: Let’s Not Dance
   the Twist
Medical Image of the Month: COVID-19-Associated Pulmonary
   Aspergillosis in a Post-Liver Transplant Patient

 

For complete imaging listings click here

Those who care for patients with pulmonary, critical care or sleep disorders rely heavily on chest radiology and pathology to determine diagnoses. The Southwest Journal of Pulmonary, Critical Care & Sleep publishes case-based articles with characteristic chest imaging and related pathology. The editor of this section will oversee and coordinate the publication of a core of the most important chest imaging topics. In doing so, they encourage the submission of unsolicited manuscripts. It cannot be overemphasized that both radiologic and pathologic images must be of excellent quality. As a rule, 600 DPI is sufficient for radiographic and pathologic images. Taking pictures of plain chest radiographs and CT scans with a digital camera is strongly discouraged. The figures should be cited in the text and numbered consecutively. The stain used for pathology specimens and magnification should be mentioned in the figure legend. Those who care for patients with pulmonary, critical care or sleep disorders rely heavily on chest radiology and pathology to determine diagnoses. The Southwest Journal of Pulmonary, Critical Care & Sleep publishes case-based articles with characteristic chest imaging and related pathology. The editor of this section will oversee and coordinate the publication of a core of the most important chest imaging topics. In doing so, they encourage the submission of unsolicited manuscripts. It cannot be overemphasized that both radiologic and pathologic images must be of excellent quality. As a rule, 600 DPI is sufficient for radiographic and pathologic images. Taking pictures of plain chest radiographs and CT scans with a digital camera is strongly discouraged. The figures should be cited in the text and numbered consecutively. The stain used for pathology specimens and magnification should be mentioned in the figure legend.

-------------------------------------------------------------------------------------------  

Wednesday
Nov302016

Medical Image of the Week: Pulsus Alternans

Figure 1. Telemetry display including arterial pressure waveform, which demonstrates alternating beats of large (large arrows) and small (small arrows) pulse pressure. Concurrent pulse oximetry could not be performed at the time of the image due to poor peripheral perfusion.

A 52 year old man with a known past medical history of morbid obesity (BMI, 54.6 kg/m2), heart failure with preserved ejection fraction, hypertension, untreated obstructive sleep apnea, and obesity hypoventilation syndrome presented with increasing dyspnea over several months accompanied by orthopnea and weight gain that the patient had treated at home with a borrowed oxygen concentrator. On arrival to the Emergency Department, the patient was in moderate respiratory distress and hypoxic to SpO2 70% on room air. Physical examination was pertinent for pitting edema to the level of the chest. Assessment of jugular venous pressure and heart and lung auscultation were limited by body habitus, but chest radiography suggested pulmonary edema. The patient refused aggressive medical care beyond supplemental oxygen and diuretic therapy. Initial transthoracic echocardiography was limited due to poor acoustic windows but suggested a newly depressed left ventricular ejection fraction (LVEF) of <25%. The cause, though uncertain, may have been reported recent amphetamine use. The patient deteriorated, developing shock and respiratory failure; after agreeing to maximal measures, ventilatory and inotropic/vasopressor support was initiated.

Shortly after placement of the arterial catheter, the ICU team was called to the bedside for a change in the arterial pressure waveform (Figure 1), which then demonstrated alternating strong (arrow) and weak beats (arrow head) independent of the respiratory cycle. The waveform was recognized as pulsus alternans. Repeat bedside echocardiography suggested severe biventricular systolic impairment and LVEF of approximately 5-10%, later confirmed by formal transesophageal ehocardiography performed prior to a cardioversion for atrial flutter.

Pulsus alternans was first formally described in 1872 and associated with severe left ventricular systolic dysfunction (1). The pattern of pulsus alternans is detectable by palpation, arterial pressure waveform analysis, and Doppler echocardiography. Competing theories in the early 20th century attempted to explain this finding. Wenkebach and Straub, using the Starling relationship, suggested that the alternating force of the pulse is due to alternating filling volumes: greater diastolic volumes accommodated by increased fiber length caused forceful contraction/greater stroke volume with subsequently reduced end systolic and therefore end diastolic volumes for the next (weaker) beat; the consequently reduced force left again greater end systolic and end diastolic volumes for the next (more powerful) beat thereafter. Gaskell, Hering, and Wiggers alternatively proposed the phenomenon was rooted in myocardial contractility fluctuations independent of volumes. Laboratory and animal data supported both theories, but seminal clinical work in the 1960s using concurrent ventriculography and ventricular pressure measurements demonstrated that both mechanisms, in fact, occur in different human subjects (2). The second, Starling-independent mechanism is now thought to be due at least in part to delayed intracellular calcium cycling leading to rhythmic fluctuations in excitation-contraction coupling (3).

Regardless of the underlying physiology, the significance of pulsus alternans as a harbinger of severe ventricular dysfunction and poor prognosis has been recognized and unquestioned since its description. This was unfortunately true in the case of our patient, who developed multiorgan failure despite resuscitative efforts and died three days after admission.

Luke M. Gabe, MD

University of Arizona College of Medicine

Department of Internal Medicine

Division of Pulmonary, Allergy, Critical Care and Sleep Medicine

1501 N. Campbell Ave.

Tucson, AZ USA

References

  1. Traube L. Ein fall von pulsus bigeminus nebst bemerkungen tiber die lebershwellungen bei Klappenfehlern und über acute leberatrophic. Ber Klin Wschr. 1872;9:185.
  2. Cohn KE, Sandler H, Hancock EW. Mechanisms of pulsus alternans. Circulation. 1967 Sep;36(3):372-80. [CrossRef] [PubMed]
  3. Euler DE. Cardiac alternans: mechanisms and pathophysiological significance. Cardiovasc Res. 1999 Jun;42(3):583-90. [CrossRef] [PubMed]

Cite as: Gabe LM. Medical image of the week: pulsus alternans. Southwest J Pulm Crit Care. 2016;13(5):266-7. doi: https://doi.org/10.13175/swjpcc123-16 PDF 

Wednesday
Nov232016

Medical Image of the Week: Bronchial Clot Removal via Cryotherapy

Figure 1. Chest x-ray showing complete opacification of the left hemithorax.

 

Figure 2. Flexible bronchoscopy with cryotherapy was used to remove clot that formed casts of the bronchial tree. Black arrow: depicts segmental branch of the left upper lobe.

 

A 38-year-old man with a history of non-ischemic dilated cardiomyopathy presented with decompensated heart failure, acute renal failure, and possible sepsis. He underwent right cardiac catheterization but developed hemoptysis with concern for pulmonary artery rupture. Subsequently, the patient suffered a cardiac arrest but was resuscitated. Emergent bronchoscopy revealed copious amounts of blood and clot that could not be cleared at the time. The patient was then taken to the operating room and placed on A-A ECMO (left ventricle to aorta). The following morning chest x-ray (Figure 1) revealed a completely opacified left lung. Flexible bronchoscopy showed blood clot along the entire left bronchial tree. Initial attempts to remove the clot with suction and endobronchial graspers was unsuccessful. Ultimately, cryotherapy was used to remove the majority of the clot in fragments (Figure 2).

The use of cryotherapies and specifically, in this case, a cryoprobe, has been shown to safely and effectively remove thrombus from the bronchial tree. The basis behind this technique is the use of pressurized nitrous oxide or carbon dioxide to cool a metal probe tip. The probe then freezes any substance it comes in direct contact with, such as a blood clot. Thus, cryoadherence of the probe to the clot allows for effective removal via flexible endoscopy.  Sriratanaviriyakul et al. (1) reported success rates for cryoextraction of blood clots to be >90%.

Cathy V. Ho MD, Ryan Matika MD, and Mimi Amberger MD

1Division of Trauma, Critical Care, Burn and Emergency Surgery. Department of Surgery

2The Department of Anesthesia

University of Arizona

Tucson, AZ USA

Reference

  1. Sriratanaviriyakul N, Lam F, Morrissey BM, Stollenwerk N, Schivo M, Yoneda KY.Safety and clinical utility of flexible bronchoscopic cryoextraction in patients with non-neoplasm tracheobronchial obstruction: a retrospective chart review. J Bronchology Interv Pulmonol. 2015 Oct;22(4):288-93. [CrossRef] [PubMed] 

Cite as: Ho CV, Matika R, Amberger M. Medical image of the week: bronchial clot removal via cryotherapy. Southwest J Pulm Crit Care. 2016;13(5):253-4. doi: https://doi.org/10.13175/swjpcc109-16 PDF