Search Journal-type in search term and press enter
Southwest Pulmonary and Critical Care Fellowships
In Memoriam

Sleep

(Click on title to be directed to posting , most recent listed first)

July 2023 Sleep Case of the Month: Fighting for a Good Night’s Sleep
Associations Between Insomnia and Obstructive Sleep Apnea with
   Nutritional Intake After Involuntary Job Loss
January 2023 Sleep Case of the Month: An Unexpected EEG Abnormality
July 2022 Sleep Case of the Month: A Sleepy Scout
Assessing Depression and Suicidality Among Recently Unemployed
   Persons with Obstructive Sleep Apnea and Socioeconomic
   Inequality
Impact of Recent Job Loss on Sleep, Energy Consumption and Diet
Long-term All-Cause Mortality Risk in Obstructive Sleep Apnea Using
   Hypopneas Defined by a ≥3 Percent Oxygen Desaturation or Arousal
The Association Between Obstructive Sleep Apnea Defined by 3 Percent
   Oxygen Desaturation or Arousal Definition and Self-Reported
Cardiovascular Disease in the Sleep Heart Health Study
Informe de políticas: Fatiga, sueño y salud del personal de enfermería, y 
   cómo garantizar la seguridad de los pacientes y el público
Sleep Tips for Shift Workers in the Time of Pandemic
Tips for Circadian Sleep Health While Working from Home
Impacto del Sueño y la Modalidad de Diálisis sobre la Calidad de Vida en
   una Población
The Effect of CPAP on HRQOL as Measured by the Quality of Well-Being
   Self-Administered Questionnaire (QWB-SA)
Declaración de posición: Reducir la fatiga asociada con la deficiencia de 
   sueño y las horas de trabajo en enfermeras
Impact of Sleep and Dialysis Mode on Quality of Life in a Mexican Population
Out of Center Sleep Testing in Ostensibly Healthy Middle Aged to Older
   Adults
Sleep Related Breathing Disorders and Neurally Mediated Syncope (SRBD
   and NMS)
Sleep Board Review Question: Restless Legs
Impact of Sleep Duration and Weekend Oversleep on Body Weight
   and Blood Pressure in Adolescents
Role of Spousal Involvement in Continuous Positive Airway Pressure
   (CPAP) Adherence in Patients with Obstructive Sleep Apnea (OSA)
The Impact of an Online Prematriculation Sleep Course (Sleep 101) on
   Sleep Knowledge and Behaviors in College Freshmen: A Pilot Study
Obstructive Sleep Apnea and Quality of Life: Comparison of the SAQLI,
   FOSQ, and SF-36 Questionnaires
Gender Differences in Real-Home Sleep of Young and Older Couples
Brief Review: Sleep Health and Safety for Transportation Workers
Lack of Impact of Mild Obstructive Sleep Apnea on Sleepiness, Mood and
   Quality of Life
Alpha Intrusion on Overnight Polysomnogram
Sleep Board Review Question: Insomnia in Obstructive Sleep Apnea
Long-Term Neurophysiologic Impact of Childhood Sleep Disordered 
   Breathing on Neurocognitive Performance
Sleep Board Review Question: Hyperarousal in Insomnia
Sleep Board Review Question: Epilepsy or Parasomnia?
Sleep Board Review Question: Nocturnal Hypoxemia in COPD
Sleep Board Review Questions: Medications and Their
   Adverse Effects
Sleep Board Review Questions: The Restless Sleeper
Obstructive Sleep Apnea and Cardiovascular Disease:
Back and Forward in Time Over the Last 25 Years
Sleep Board Review Questions: The Late Riser
Sleep Board Review Questions: CPAP Adherence in OSA
Sleep Board Review Questions: Sleep Disordered Breathing 
That Improves in REM
The Impact Of Sleep-Disordered Breathing On Body
   Mass Index (BMI): The Sleep Heart Health Study (SHHS)
Incidence and Remission of Parasomnias among Adolescent Children in the 
   Tucson Children’s Assessment of Sleep Apnea (TuCASA) Study 
A 45-Year Old Man with Excessive Daytime Somnolence, 
   and Witnessed Apnea at Altitude

 

The Southwest Journal of Pulmonary and Critical Care and Sleep publishes articles related to those who treat sleep disorders in sleep medicine from a variety of primary backgrounds, including pulmonology, neurology, psychiatry, psychology, otolaryngology, and dentistry. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

-------------------------------------------------------------------------------------

Monday
Apr062020

Tips for Circadian Sleep Health While Working from Home

Robin K. Yuan PhD1

Enmanuelle Pardilla-Delgado PhD1,2 

Kirsi-Marja Zitting PhD1

Jeanne F. Duffy MBA, PhD1

 

1Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School; 2Department of Psychiatry, Massachusetts General Hospital,

Boston, MA USA

Sleep is more important now than ever.

Getting enough sleep and maintaining a regular schedule for optimal circadian rhythm health is a challenge for most of us even in the best of times, but the schedule changes and added stress from the COVID-19-19,  pandemic has likely impacted your sleep schedule over the past few weeks. 

Sleep does more than just make us feel better the next day. It allows us to pay close attention, remember new information, and multi-task. Regularity of sleep and wake also maintains the health and optimal function of the circadian timing system (our internal biological clock). Insufficient sleep and irregular sleep-wake schedules can impair our health, weaken our immune system, increase inflammation, and even lead to increased vulnerability to viral illnesses. Given how important regular, sufficient, sleep is for our safety, health, and quality of life, the following tips may help to optimize circadian and sleep health in people now remaining at home.

Tips for optimal sleep and circadian rhythm health for those working from home. 

  • The good news is that if you are working from home, you may now have extra time for sleep! Many of us usually sleep less than our optimal amount, resulting in a chronic sleep debt. Now that you don’t have to commute, use that extra time for sleep to pay off your sleep debt.
  • Many of us habitually cut our sleep short on weeknights and “sleep in” on weekends, which both creates a sleep debt and disrupts our internal biological clock. Working from home may allow you the time and flexibility to keep the same sleep schedule 7 days a week. If you are a night owl and can do your daytime work on your own schedule, embrace the flexibility to sleep at your (later) preferred times every night!
  • Get up around the same time every day. Your wake time is like an anchor to your day and night. Keeping a consistent wake time will help other parts of your day fall into a routine and help you sleep better at night.
  • Get bright light exposure during the day, especially in first hour or two after waking. Morning bright light, when received around the same time every day, is a powerful time signal to our body clock. Bright light has the added benefit of promoting alertness, which is particularly important if you find it difficult to get going in the morning. Try opening curtains to let in direct sunlight as soon as you wake up, taking a short walk outside before breakfast, or drinking your coffee on your balcony or in front of a window. When you are working, try to sit near a window where you can get as much sunlight exposure as possible.
  • Try to make your first social interaction of the day at the same time each morning. When you are following “social distancing”, interacting with others can be difficult, especially if you live alone. Try to have a phone or video call with friends or family at about the same time each morning. Even a quick “hello” and check-in is useful. The other person will probably appreciate the human contact too!
  • Eat your meals around the same time each day, especially breakfast. Eating meals at the same time of the day serves as a time cue and supports a healthy biological clock, which is important for sleep.
  • Exercise around the same time each day and avoid being sedentary for long stretches of time. If possible, exercise outdoors so you can get bright light exposure.
  • Keep daytime and night-time different and separate. Our body clock benefits from keeping day and night clearly distinguished. During daytime, keep your living space full of light and keep active doing your work from home or organizing, cooking, cleaning, and exercising. In the evening, keep the lights dim, block blue light on electronic devices, and do less active things such as watching TV, reading, or a sedentary hobby. Keep a regular pre-bedtime routine to help you unwind and tell your body ‘it’s time to sleep’.
  • Avoid using light-emitting electronic devices (like laptops, tablets, smart phones) for at least 1 hour before your set bedtime. A dim evening environment can help your body naturally produce melatonin and prepare your body for sleep.
  • Make sure your sleep environment is dark and quiet. Use an eye mask or blackout shades, wear earplugs or try a white noise machine or app. If possible, leave your phone in a different room.

Additional information and help. 

  • If you find yourself staying up later each night and sleeping later and later in the morning, you may be developing, a circadian rhythm sleep-wake disorder. You may want to seek help from a sleep specialist if this causes your problems with your work schedule or family.
  • To block blue light from your electronic devices, turn the brightness of the screen to the lowest setting, and turn on apps such as f.lux (multi-platform) or Night Shift on iOSand Macs.
  • General information about circadian rhythm health can be found here.

The authors are supported by NIH grants P01 AG09975 (RKY, KMZ, JFD), R01 AG044416 (JFD), T32 HL07901 (EP-D), F32 HL143893 (RKY), R01 AG054671 (EP-D), and the Milton Fund (KMZ).

Cite as: Yuan RK, Pardilla-Delgado E, Zitting K, Duffy J. Tips for circadian sleep health while working from home. Southwest J Pulm Crit Care. 2020;20(4):126-7. doi: https://doi.org/10.13175/swjpcc023-20 PDF

Sunday
Mar292020

Impacto del Sueño y la Modalidad de Diálisis sobre la Calidad de Vida en una Población

Editor's Note: The following article was previously published in English in the SWJPCC as SWJPCC 017-19. It is reproduced in Spanish because of its relevance to our Spanish-speaking readers.

Luxana Reynaga-Ornelas, Ph.D., R.N.1

Carol M. Baldwin, Ph.D., R.N., AHN-BC, F.A.A.N.2
Kimberly Arcoleo, Ph.D., M.P.H.3

Stuart F. Quan, M.D.2,4,5

1 División de Ciencias de la Salud. Departamento de Enfermería y Obstetricia Sede León

Universidad de Guanajuato

Sede San Carlos; Blvd. Puente Milenio #1001; Fracción del Predio San Carlos; C.P. 37670; León, Gto, Mexico

2 Arizona State University, Edson College of Nursing and Health Innovation

PAHO/WHO Collaborating Centre to Advance the Policy on Research for Health

500 N. 3rd Street, Phoenix, AZ 85004

3 University of Rochester School of Nursing

Box SON, Helen Wood Hall

601 Elmwood Avenue, Rochester, NY 14642

4 Division of Sleep and Circadian Disorders Brigham and Women’s Hospital and Harvard Medical School

221 Longwood Ave. Boston, MA 02115

5 Asthma and Airway Disease Research Center, University of Arizona College of Medicine

1501 N. Campbell Ave., Tucson, AZ 85725

 

Resumen

Antecedentes: La calidad de vida relacionada con la salud (CVRS) se encuentra disminuida en la enfermedad renal en etapa avanzada (EREA) pero se conoce poco acerca del impacto de los trastornos del sueño, la modalidad de diálisis y los factores demográficos sobre la CVRS de pacientes mexicanos con EREA.

Métodos: Se incluyeron 121 adultos con EREA pertenecientes a 4 unidades de diálisis del estado de Guanajuato, México, estratificados por unidad y modalidad de diálisis (Hemodiálisis [HD], diálisis peritoneal continua ambulatoria [DPCA] y diálisis peritoneal automatizada [DPA]). Se realizó un análisis de la información clínica y los datos obtenidos del Sleep Hart Health Study Sleep Habits Questionnaire, del cuestionario corto del  Medical Outcomes Study (MOS; SF-36) y de la Escala de Somnolencia Epworth.

Resultados: En general, los síntomas y los trastornos del sueño fueron frecuentes (ej. insomnio 37.2%). Los puntajes de SF-36 resultaron más bajos comparados con las normas de México y Estados Unidos. En la subescala de Vitalidad, los pacientes de HD reportaron mejor CVRS y los pacientes de DPCA la peor CVRS. En el modelo de análisis multivariado, la modalidad de diálisis y los trastornos del sueño en grupo y el ingreso bajo, resultaron asociados significativamente con una pobre calidad de vida total (SF-36) y una pobre salud mental (CVRS). Los modelos de calidad de vida total y del componente mental mostraron una CVRS significativamente mejor tanto para DPA como para la HD con tamaños del efecto de pequeño a moderado. El análisis de costo-efectividad mostró ventaja para la DPA.

Conclusiones: Los pacientes mexicanos de EREA tienen una CVRS reducida, y los trastornos del sueño pueden ser importantes para conducir a este hallazgo. La DPA debe ser la modalidad de diálisis de preferencia en México.

Introducción

La prevalencia de la enfermedad renal en etapa avanzada está aumentando en todo el mundo con una prevalencia estimada en 2010 de 4.9 millones de personas. Desafortunadamente, solo la mitad recibe diálisis; esta necesidad se proyecta más del doble para 2030 (1). La enfermedad renal en etapa avanzada está asociada con morbilidad y mortalidad cardiovascular, diabetes tipo 2, deterioro cognitivo, y trastornos minerales y óseos. En México, es un problema de salud significativo con una tasa de prevalencia e incidencia anual de 1,564 y 412 por millón de personas respectivamente, con mas de 65,000 individuos recibiendo diálisis (2). Además, entre el 2000 y el 2013, la tasa de incidencia de EREA ha incrementado 122% (2). Tiene una tasa de mortalidad de 12.3 muertes por 100,000 habitantes y es la segunda causa de años perdidos por muerte prematuras (2). El tratamiento más común para la EREA en México es la hemodiálisis (HD) llevada a cabo en centros de diálisis en más del 50% de los pacientes. Los restantes reciben diálisis peritoneal (DP) en casa, de los cuales 70% están en diálisis peritoneal continua ambulatoria (DPCA) y el 30% están en diálisis peritoneal automatizada (DPA) (2). Con la DPCA, la solución de diálisis se infunde manualmente hacia la cavidad peritoneal y es drenada después de pocas horas usualmente cuatro veces al día. Con la DPA, el proceso es automatizado con un equipo con alarmas y dispositivos de seguridad y es realizada durante la noche. El trasplante renal es poco frecuente.

El tratamiento para la EREA tiene significativas implicaciones fisiológicas y socioeconómicas para el individuo, la familia y la comunidad. No sorprende que las personas con EREA reporten una calidad de vida relacionada con la salud (CVRS) más pobre en comparación con la población general (3,4). Varios estudios han examinado el tipo de modalidad de diálisis y la CVRS. Se han identificado mejores puntajes de CVRS para DP comparado con HD en el tratamiento para la EREA (5,6), pero no siempre (7-9). Un meta análisis encontró una mejor calidad de vida basada en la utilidad para DPA comparado con DPCA (10) y un estudio reciente encontró que la DPA está asociada con una mejor salud física y moderados síntomas relacionados con la diálisis en comparación con la DPCA (11). La mayoría de los estudios incluidos en el meta análisis eran de Norteamérica, Europa o Asia. Existen pocos datos disponibles que comparen la CVRS según la modalidad de diálisis en personas con EREA en países de Latinoamérica incluyendo México.

Los trastornos del sueño en personas con EREA son comunes, con una prevalencia estimada 50 a mas de 80%, e influyen negativamente en la CVRS (12-14). En los pacientes con EREA se incluyen pesadillas, somnolencia excesiva diurna (SED), síndrome de piernas inquietas (SPI), síndrome de apnea del sueño (SAS), insomnio y pobre calidad del sueño (13). No es claro si la prevalencia y la severidad de los trastornos del sueño son similares entre las modalidades de diálisis; estudios previos han reportado resultados contradictorios con tasas equivalentes (15-17) y tasas diferentes (20). Solo un estudio realizó comparaciones entre HD, DPCA y DPA (20). Encontraron tasas similares de insomnio pero menores en SAS con HD, y mayores en SPI con DPA.

El propósito de este estudio fue determinar las asociaciones entre CVRS y los trastornos del sueño en función de la modalidad de diálisis en una población mexicana con EREA. Una asociación diferenciada puede ser un factor importante para la elección de las modalidades de diálisis. Nuestra hipótesis fue que en esta población, los trastornos del sueño serían un determinante importante de la CVRS en EREA, que DPA estaría asociada a una mejor calidad de vida y tendría un mayor costo-efectividad que la HD y la DPCA.

Métodos

Diseño

Se realizó un muestreo por conveniencia de 125 pacientes con EREA seleccionados entre personas aseguradas en el Instituto para la Salud y la Seguridad Social de los Trabajadores del Estado (ISSSTE) quienes vivían en el Estado de Guanajuato, México. Los participantes fueron seleccionados proporcionalmente por clusters. La muestra incluyó 30 pacientes de cada localidad geográfica de las unidades de diálisis de las ciudades de Celaya, Irapuato, Guanajuato y León; diez pacientes fueron seleccionados de cada modalidad (DPCA, DPA, y HD). Los pacientes fueron incluidos si tenían 18 años o más, hablaban español, recibían diálisis y no habían estado hospitalizados dentro de los tres meses previos al reclutamiento. Los pacientes con déficit cognitivo u otros déficits mentales que les impidieran completar los cuestionarios fueron excluidos del estudio. Fueron reclutados para su participación durante su reunión mensual, o bien en la sala de espera de consulta del especialista. En el momento de contacto inicial o con una cita posterior, se solicitaba al paciente que proporcionara el consentimiento informado, y completara de manera individual la entrevista y los cuestionarios que incluían información acerca de su salud, sueño y CVRS. También se les pidió dar un consentimiento para la revisión de sus expedientes. El estudio fue aprobado por el Comité de Ética de la Universidad de Guanajuato y el Consejo Institucional Revisor de Arizona State University.

Recolección de datos

Los entrevistadores capacitados obtuvieron información relacionada con edad, sexo, estado civil, estado socioeconómico (ESE), nivel de educación, número de hospitalizaciones, y tiempo desde el primer tratamiento. Los participantes también completaron la versión en español validada del cuestionario Sleep Heart Health Study Sleep Habits Questionnaire y de la versión corta en español de 36 items del Medical Outcomes Study (MOS) SF-36 para la medición de CVRS. Se registraron su peso y su estatura para determinar el índice de masa corporal (IMC). Del expediente médico de los participantes se recolectaron los datos más recientes de los últimos tres meses de niveles séricos de glucosa, albumina, creatinina, urea, y hematocrito/hemoglobina. Otros datos clínicos adicionales fueron recolectados para calcular el costo financiero como; etiología de la EREA, hospitalizaciones en el último año, tipo de catéter, dosis de diálisis, número de drogas antihipertensivas, uso de eritropoyetina, número de sesiones de HD por semana y tiempo de la última visita domiciliaria realizada por el equipo de salud

Instrumentos de medición

Sleep Heart Health Sleep Study (SHHS), Sleep Habits Questionnaire (SHQ). El instrumento SHQ ha sido utilizado frecuentemente con pacientes con trastornos del sueño no identificados. El cuestionario se enfoca en nueve aspectos de trastornos del sueño: 1) Ronquido; 2) Pausas en la respiración (apnea); 3) Apneas observadas por otros; 4) Somnolencia diurna; 5) Sueño insuficiente; 6) Síntomas de insomnio incluyendo sueño no reparador; 7) Pesadillas; 8) Síndrome de piernas inquietas; y 9) Duración del sueño reportado en días de la semana y fines de semana. Los síntomas de sueño fueron calificados en una escala de 5-puntos tipo Likert desde ‘Nunca’ hasta ‘Casi siempre’. El SHQ se desarrolló para el SHHS, ha sido utilizado en una variedad de investigaciones y es aceptado como un medio apropiado para caracterizar la salud del sueño. La versión en español del SHQ fue validada por Baldwin y colaboradores y muestra concordancia con la versión en inglés (21).

Epworth Sleepiness Scale. El Epworth Sleepiness Scale (ESS) es un instrumento validado de auto-llenado que pide a los sujetos que califiquen la posibilidad de quedarse dormido durante ocho situaciones comunes usando cuatro categorías ordinales que van del 0 (nula posibilidad) a 3 (alta posibilidad) (22). Los puntajes van de 0 al 24 con un puntaje >10 sugiriendo SSD (22). La versión en español del ESS fue incorporada al SHQ y ha demostrado una confiabilidad y validez equivalentes a la versión en inglés (23).

Medical Outcomes Survey (MOS) Versión corta SF-36 (Versión español). El MOS SF-36 es una medición ampliamente utilizada del estado de salud y la calidad de vida (24). Mide las variaciones en las prácticas y resultados del cuidado de la salud en una encuesta auto administrada que evalúa ocho dimensiones de salud. Los puntajes de cada subescala tienen un rango de 0-100, con puntajes más altos representando una mejor calidad de vida (24). Las subescalas miden los siguientes ocho conceptos de salud general: función física (FF), rol físico (RF), dolor corporal (DC), salud general (SG), vitalidad (VT), función social (FS), salud mental (SM) y rol emocional (RE). La versión en español fue validada en una población mexicana (25).

 

Puntajes SF-6. El formato corto-6D es una medida basada en una clasificación del estado de salud basado en preferencia, desarrollada del SF-36. Todos los participantes que completan el SF-36 pueden obtener un puntaje SF-6D (26). El SF-6D es una variable continua, calificada en una escala de 0.29-1.0, con 1.00 indicando salud óptima. Ha sido utilizada en evaluaciones económicas de intervenciones para EREA (27).

Análisis de Datos

Las variables continuas se reportan como medias y desviaciones estandard y las variables categóricas mediante porcentajes. Se utilizó la prueba de chi cuadrada para evaluar la asociación de las características demográficas con la modalidad de diálisis. Las comparaciones entre los puntajes de CVRS y los grupos de tratamiento se realizaron mediante análisis de varianza (ANOVA). Los tamaños del efecto se estimaron utilizando la d de Cohen. Se realizó un análisis de regresión linear controlando los factores sociodemográficos, los ingresos (ESE), y los trastornos del sueño. Para el análisis de los datos se utilizó SAS (V9.1) y el SPSS (V25). Se consideró una P <0.05 como estadísticamente significativo excepto cuando se señale.

Se realizó un análisis de costo-efectividad utilizando el método de año de vida ajustado a la calidad (QALY) para examinar el costo-efectividad de cada grupo de modalidad de diálisis. Los datos de los costos se obtuvieron de la información disponible en línea de fuentes gubernamentales mexicanas. Se calculó el QALY como el número de años en diálisis/hemodiálisis X el puntaje SF6D. La tasa de la diferencia en el costo sobre la diferencia en efectividad (QALY) se calculó para cada una de las tres terapias con lo que se obtuvo la tasa de incremento de costo-efectividad (ICER).

Resultados

De los 125 pacientes que fueron invitados a participar, solo 121 cubrieron los criterios de inclusión, y todos acordaron participar voluntariamente y firmar el consentimiento informado. Las características sociodemográficas y clínicas de los pacientes que consintieron participar se muestran en la Tabla 1.

Tabla 1. Características Sociodemográficas y Clínicas de los Participantes del Estudio por Modalidad de Diálisis.

Nota: ‡p<0.01; *p < 0.05; †p<0.10

DPA (Diálisis Peritoneal Automatizada); DPCA (Diálisis Peritoneal Continua Ambulatoria); HD (Hemodiálisis).

Hubo un porcentaje ligeramente mayor de hombres (55.4%) y el 39.7% tenían 65 años o más de edad. Las características clínicas no estuvieron disponibles para todos los pacientes. Sin embargo, los pacientes dializados con DPA fueron más jóvenes, con más años de educación, tenían mayores ingresos, consumían menos alcohol y era más común que estuvieran laborando. Hubo una tendencia de los pacientes de DPA a tener un mayor nivel de creatinina sérica. Aparte de lo anterior, no hubo más diferencias entre los grupos.

La prevalencia de trastornos y síntomas de sueño auto-reportada en total, así como su clasificación por modalidad de diálisis se presenta en la Tabla 2.

Tabla 2. Prevalencia de Trastornos y Síntomas del Sueño Auto-reportados por Tipo de Diálisis

Nota: *p < 0.05, †p <0.10

SDE (Somnolencia diurna excesiva); DPA (Diálisis Peritoneal Automatizada); DPCA (Diálisis Peritoneal Continua Ambulatoria); HD (Hemodiálisis).

Notablemente, todos los pacientes reportaron por lo menos un síntoma de sueño en el año anterior (datos no mostrados). El insomnio fue el trastorno reportado con mayor frecuencia y particularmente con mayor prevalencia en pacientes de HD, aunque este resultado no fue estadísticamente significativo. También se observó una tendencia de reportar mayores tasas de sueño no reparador en los pacientes de HD (42.5%) y DPCA (41.0%) comparados con los pacientes de DPA (19.0%). En contraste, los pacientes de DPA reportaron mayores tasas de apnea observada por otros y ronquido (14.3% y 25.6%, respectivamente) comparados con los pacientes en DPCA (10.3%, 19.4%) y HD (5.1%, 17.5%). Los pacientes en DPA reportaron con menor frecuencia SSD (11.9%) en la ESE pero esta diferencia no fue significativa al compararla con DPCA (25.6%) y HD (25.0%). La prevalencia de trastornos del sueño fue igual en los pacientes menores de 65 años al compararlos con los mayores de 65 años (datos no mostrados) excepto para el aspecto de despertarse muy temprano y no poder volver a quedarse dormidos (menores: 32.9% vs. mayores: 51.2%, p=0.05).

La Tabla 3 presenta la comparación de los ocho dominios del SF-36 y los puntajes del Resumen del Componente Físico y Mental (RCF y RCM) para los tres grupos de diálisis con tamaños de efecto para comparaciones pares.

Tabla 3. Puntajes Promedio y Desviaciones Estándar para los Dominios de SF-36, Puntajes de los Componentes Físico y Mental y Puntajes de SF-6D por Modalidad de Diálisis

Nota: ‡p<0.01; *p < 0.05; †p <0.10

PCF (Puntaje Componente Físico); PCM (Puntaje Componente Mental); DE (Desviación Estándar); DPA (Diálisis Peritoneal Automatizada); DPCA (Diálisis Peritoneal Continua Ambulatoria); HD (Hemodiálisis).

Los tamaños de efecto de Cohen d fueron calculados examinando las diferencias entre grupos de tipo de diálisis (tamaño de efecto pequeño ~0.2, tamaño de efecto mediano ~0.5, tamaño de efecto grande ~0.8)

Los pacientes en HD reportaron significativamente mejor CVRS para Vitalidad y una tendencia hacia una mayor Función Social comparado con las personas en DPCA y DPA; los pacientes en DPCA experimentaron una calidad de vida más pobre en estas dos escalas. Se observó una tendencia a indicar una mejor Función Física y Rol Físico de CVRS en los pacientes de DPA y HD en comparación con los pacientes de DPCA. Así mismo una tendencia a una mejor salud mental en el RCM para los que reciben HD y DPA comparado con los pacientes en DPCA. De manera Importante, los tamaños de efecto de varios dominios y subdominios mostraron ser generalmente pequeños a moderados para los contrastes entre DPCA y ya sea DPA o HD. De cualquier manera, las diferencias fueron pequeñas y poco importantes entre DPA y HD. No se observaron otras diferencias importantes entre los grupos en el SF-36.

Posteriormente, se investigaron los determinantes de la CVRS utilizando modelos multivariados con los factores sociodemográficos, comorbilidades, trastornos y síntomas de sueño auto reportados como posibles variables explicativas. La modalidad de diálisis (DPCA asociada con peor CVRS en comparación con HD y DPA, F=4.87, p<0.02), los trastornos y síntomas del sueño como grupo (p. e., cualquier síntoma relacionado con apnea obstructiva del sueño, insomnio, sueño insuficiente y síndrome de piernas inquietas, F=17.79, p<0.0001) y el ingreso económico (F=4.48, p<0.04) están asociados significativamente con peor CVRS en el RCM del SF-36, representando el 34% de la varianza (F=4.02, p<0.0004). En contraste, el modelo para el RCF no fue estadísticamente significativo. La CVRS fue significativamente mejor tanto para DPA (LSMedia=52.0+ 2.3) y HD (51.4 + 2.6) en comparación con DPCA (43.0 + 2.5, p<.025 vs. DPA/HD) en el modelo del Resumen del Componente Mental, pero no en el modelo de Resumen del Componente Físico (LSMedia: DPCA: 31.4 + 2.5, DPA: 33.7 + 2.3, HD: 34.8 + 2.5; p>0.05 para todas las comparaciones).

El análisis de costo-efectividad para cada modalidad de diálisis está en la Tabla 4.

Tabla 4. Análisis de Costos por Modalidad de Diálisis

Nota: DPA (Diálisis Peritoneal Automatizada; DPCA (Diálisis Peritoneal Continua Ambulatoria); HD (Hemodiálisis). QALY (Años de Vida Aujstados a Calidad), RICE (Tasa Incremental de Costo Efectividad); EI(Efectividad Incremental); CI (Costo Incremental).

Aunque la DPCA fue la menos costosa, fue la menos efectiva (QALY=0.71); la DPA fue menos costosa que la HD, pero fue más efectiva (DPA QALY: 2.05 vs. HD QALY: 1.44) y la HD fue la más costosa con moderada efectividad. Comparando las tasas de incremento de costo efectividad entre DPA, DPCA y HD, la DPA fue superior a ambos DPCA y HD, y la HD mejor que la DPCA.

Discusión 

En este estudio, encontramos que existe una alta prevalencia de trastornos y síntomas del sueño entre la población mexicana de pacientes con EREA, con diferencias en las prevalencias según la modalidad de diálisis. Como en otras condiciones médicas crónicas, la CVRS, particularmente en los aspectos de salud mental, fue pobre en estos pacientes y de manera notable, la presencia de trastornos del sueño fue un determinante importante para una peor CVRS.

Consistentemente con previos reportes (12,13,28) observamos que los trastornos del sueño y sus síntomas son comunes entre pacientes mexicanos en diálisis. La explicación de la alta frecuencia de trastornos del sueño y sus síntomas en EREA es multifactorial incluyendo cuestiones metabólicas, medicamentos, pobre higiene de sueño y disfunción en el control ventilatorio (13). Además, encontramos que existen diferentes porcentajes de prevalencia para algunos trastornos del sueño y sus síntomas según las modalidades de diálisis. Las investigaciones previas que comparan la prevalencia de los trastornos del sueño entre modalidades de diálisis no han sido consistentes. Algunos estudios que comparan solo la DPA con la DPCA no encontraron diferencias (15-17). En otros, los problemas del sueño como un síntoma general tienden a ser más comunes en la DPA comparada con la DPCA (18), y más frecuentemente en HD en comparación con DP (19). En nuestro conocimiento, sólo existe un estudio que compara las frecuencias de trastornos del sueño y sus síntomas entre las tres modalidades de diálisis (20). En ese estudio, la frecuencia de insomnio fue alta (<80%), pero no diferente entre las modalidades de diálisis. La apnea obstructiva del sueño fue la menos común entre los pacientes de HD (36% vs. 60%[DPA] y 65% [DPCA]). Además, ellos observaron menos SPI en pacientes de HD (23%) en comparación con la DPA (50%) y la DPCA (33%). En contraste, nosotros observamos que el sueño no reparador, un síntoma del insomnio, fue más común en HD y DPCA, el ronquido y las apneas observadas por otros fueron más frecuentes en DPA, y no hubo diferencias en las tasas de prevalencia de SPI. La explicación de estas grandes discrepancias entre los estudios no es clara. Sin embargo, las posibilidades incluyen diferencias en las características sociodemográficas de las poblaciones de estudio y las preguntas utilizadas para recolectar la información. Se requieren estudios futuros, particularmente aquéllos que utilicen polisomnografía nocturna y cuestionarios estandarizados.

Encontramos que hubo pocas diferencias en la prevalencia de los trastornos del sueño y sus síntomas entre pacientes jóvenes y viejos con EREA. La única excepción fue el despertar muy temprano, que es una queja común en los ancianos y puede reflejar una fase avanzada de alteración del horario del sueño (29). Por otro lado, en contraste con nuestros hallazgos, las personas mayores de las cohortes de población general reportan más problemas con su sueño (30, 31). Proponemos que el impacto negativo de la EREA sobre la calidad del sueño tiene un mayor impacto entre los pacientes jóvenes, evitando así las diferencias por edad en las tasas de prevalencia.

A pesar de la disponibilidad de la diálisis para tratar la EREA, la CVRS se mantiene baja comparada con la población general (3,4). Nuestros hallazgos en una cohorte de pacientes con EREA mexicanos tratados con tres diferentes modalidades de diálisis no difieren y generalmente son consistentes con los datos de un estudio grande de pacientes con EREA de EUA (32). Sin embargo, comparado con un estudio previo de pacientes con EREA mexicanos, todos ellos recibiendo HD (28), encontramos menores puntajes en la Función Física y mayores puntajes en las escalas de Rol Emocional. En el presente estudio una tercera parte de los participantes corresponde a pacientes en DPCA, por lo que nuestro hallazgo de una peor Función Física puede atribuirse a los bajos puntajes de este subgrupo. La discrepancia en la escala de Rol Emocional, sin embargo, se mantiene sin explicación. Las comparaciones internacionales en CVRS en pacientes con EREA muestran una heterogeneidad considerable (32). Esto puede estar relacionado a la diversidad cultural, a los determinantes sociales de la salud, a las inequidades en salud o a las diferencias en el sistema de atención de la salud entre los países. En México, la disponibilidad y la adecuación de la diálisis varía considerablemente dependiendo de la seguridad social del paciente (2). Independientemente de las potenciales diferencias interculturales internacionales, es importante para los clínicos y los trabajadores de la salud saber que la CVRS está reducida en la EREA y que es comparable a otras condiciones crónicas médicas a pesar del uso de la diálisis. Nuestros resultados apoyan la recomendación de Jha y colaboradores de que los programas nacionales para las enfermedades crónicas deben incluir estrategias para reducir la carga y los costos relacionados a la enfermedad renal (33).

Es importante mencionar que en el análisis de multivariado encontramos la presencia de trastornos del sueño como el principal factor que afecta de manera adversa la CVRS, principalmente en el componente de salud mental de la CVRS. Otros estudios también han encontrado asociaciones negativas entre varios trastornos del sueño y la CVRS de los pacientes con EREA (12, 14). Nuestros resultados, sin embargo, amplían estas observaciones previas hacia la población latinoamericana. Éstos resaltan la importancia del sueño como un determinante de la CVRS en EREA y sugieren que la búsqueda de pobre calidad del sueño y los trastornos del sueño debería ser parte esencial del cuidado de los pacientes que se están tratando con diálisis crónica. Así mismo, deben desarrollarse estrategias para la promoción de la salud del sueño y ser implementadas en relación con esta población para evaluar la mejoría de la CVRS, de esta manera reduciendo los costos de salud, las secuelas por la EREA y el tipo de diálisis.

Además de los trastornos del sueño, observamos que la modalidad de diálisis fue un determinante importante en la CVRS. Existen varios estudios que han examinado el tipo de modalidad de diálisis con la CVRS y la mayoría reporta mejor CVRS en pacientes en DP comparados con HD como tratamiento para la EREA (5, 6). Un estudio en pacientes ancianos, sin embargo, no observó diferencias entre PD y HD (7). Se sugiere que las restricciones dietéticas y de viajes son menores, y que las oportunidades de recreación y de acceso a la diálisis se mejoran con la DP resultando un una mejor CVRS (34). Adicionalmente, los índices de depresión pueden ser mayores comparando la HD con la DP (5). Existen menos estudios que comparan la DPA con la DPCA (3, 16, 18, 35) y la mayoría muestra que la DPA está asociada con una mejor CVRS (3, 18, 35). El aporte de nuestro estudio es que es uno de los pocos en examinar la calidad de vida en las tres modalidades de diálisis simultáneamente (36). Nuestros resultados sugieren que en comparación con la HD y la DPA, la DPCA está asociada con una peor CVRS con tamaños de efecto pequeños a moderados; hubo poca diferencia entre la HD y la DPA con tamaños de efecto de ligeros a pequeños. La carga requerida para realizar continuos cambios de soluciones en la DPCA comparado con los intercambios automáticos por la noche en la DPA o con visitas programadas a los centros de diálisis para la HD, probablemente explica este hallazgo. Además, nuestro análisis de costo-efectividad indica que para el panorama socioeconómico de México, la DPA debería ser la modalidad preferida de diálisis.

Nuestro estudio tiene limitaciones importantes. Primero, la población de estudio no fue seleccionada prospectivamente o aleatorizada respecto a la modalidad de diálisis. Desafortunadamente, la elección de una modalidad de diálisis en México y en otros lados, depende del tipo de seguridad social, el ingreso económico del paciente o la disponibilidad de los recursos. De esta manera, es posible que nuestros hallazgos relacionados con la CVRS y los trastornos del sueño hayan sido impactados por un sesgo en la asignación. Por ejemplo, la DPCA puede haber sido proporcionada a los pacientes con menores ingresos, de manera que eso afecta en una peor CVRS. Intentamos mitigar esto controlando algunas de las variables de sesgo potencial con un análisis multivariado. De cualquier manera, puede estar presente alguna confusión residual. Segundo, nuestro análisis es transversal y no puede confirmarse la causalidad. Tercero, la presencia de trastornos del sueño y sus síntomas fue auto-reportada; puede haber existido error en la clasificación. Si hubo error de clasificación, sin embargo, ésta probablemente no hizo diferencias. Por último, nuestra muestra de estudio es relativamente pequeña; algunas diferencias no estadísticamente significativas pueden representar un error tipo II. De manera contraria, el uso de comparaciones múltiples puede haber resultado en un error tipo I en algunos casos.

En resumen, la CVRS está reducida en los pacientes con EREA mexicanos y la presencia de trastornos del sueño puede ser un importante conductor para este hallazgo. Las intervenciones dirigidas a mejorar la calidad del sueño y el tratamiento de los trastornos del sueño pueden mejorar la CVRS en esta población. Las diferencias en la CVRS entre las modalidades de diálisis sugieren que en México, la DPA debería ser la modalidad de diálisis de preferencia.

Reconocimientos

El financiamiento de apoyo fue proporcionado a la Dra. Luxana Reynaga-Ornelas por la beca Bardewick de Arizona State University y la beca PROMEP de la Universidad de Guanajuato. El Dr. Quan fue parcialmente apoyado por AG009975 del National Institute of Aging. Reconocemos con agradecimiento la participación en la revisión del texto en Español y la traducción inversa a la Dra. Ma. Guadalupe Reynaga-Ornelas, Nutrióloga y Doctora en Ciencias Médicas, profesora investigadora del Departamento de Medicina y Nutrición de la División de Ciencias de la Salud del Campus León de la Universidad de Guanajuato.         

Referencias

  1. Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975-82. [CrossRef] [PubMed]
  2. García-García G, García-Bejarano H, Breien-Coronado H, et al. Chapter 9 - End-Stage Renal Disease in Mexico. In: Chronic Kidney Disease in Disadvantaged Populations. García-García G, Agodoa LY and Norris K, eds. Cambridge, MA: Academic Press, 2017; 77-83. [CrossRef] [PubMed]
  3. Reina Neyra M, Cirera Segura F, Martín Espejo J. Salud Percibida por los Pacientes en DPCA y DPA. Rev Soc Esp Enferm Nefrol. 2008;11(2):26-33. [CrossRef]
  4. Guerini Rocco D, Mercieri A, Yavuzer G. Multidimensional health-status assessment of chronic hemodialysis patients: the impact on quality of life. Eura Medicophys. 2006;42(2):113-9. [PubMed]
  5. Ginieri-Coccossis M, Theofilou P, Synodinou C, Tomaras V, Soldatos C. Quality of life, mental health and health beliefs in haemodialysis and peritoneal dialysis patients: investigating differences in early and later years of current treatment. BMC Nephrol. 2008;914-2369-9-14. [CrossRef] [PubMed]
  6. Chen JY, Wan EYF, Choi EPH, et al. The health-related quality of life of chinese patients on hemodialysis and peritoneal dialysis. Patient. 2017;10(6):799-808. [CrossRef] [PubMed]
  7. Harris SA, Lamping DL, Brown EA, Constantinovici N, North Thames Dialysis Study (NTDS) Group. Clinical outcomes and quality of life in elderly patients on peritoneal dialysis versus hemodialysis. Perit Dial Int. 2002;22(4):463-70. [PubMed]
  8. Queeley GL, Campbell ES. Comparing treatment modalities for end-stage renal disease: A meta-analysis. Am Health Drug Benefits. 2018;11(3):118-27. [PubMed]
  9. Manavalan M, Majumdar A, Harichandra Kumar KT, Priyamvada PS. Assessment of health-related quality of life and its determinants in patients with chronic kidney disease. Indian J Nephrol. 2017;27(1):37-43. [CrossRef] [PubMed]
  10. Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9(9):e1001307. [CrossRef] [PubMed]
  11. Yang F, Luo N, Lau T, Yu ZL, Foo MWY, Griva K. Health-related quality of life in patients treated with continuous ambulatory peritoneal dialysis and automated peritoneal dialysis in Singapore. Pharmacoecon Open. 2018;2(2):203-8. [CrossRef] [PubMed]
  12. Brekke FB, Amro A, Hortemo Osthus TB, Dammen T, Waldum B, Os I. Sleep complaints, depression and quality of life in Norwegian dialysis patients. Clin Nephrol. 2013;80(2):88-97. [CrossRef] [PubMed]
  13. Hanly P. Sleep disorders and end-stage renal disease. Curr Opin Pulm Med. 2008;14(6):543-50. [CrossRef] [PubMed]
  14. Edalat-Nejad M, Qlich-Khani M. Quality of life and sleep in hemodialysis patients. Saudi J Kidney Dis Transpl. 2013;24(3):514-8. [CrossRef] [PubMed]
  15. Turkmen K, Yazici R, Solak Y, et al. Health-related quality of life, sleep quality, and depression in peritoneal dialysis and hemodialysis patients. Hemodial Int. 2012;16(2):198-206. [CrossRef] [PubMed]
  16. Guney I, Solak Y, Atalay H, et al. Comparison of effects of automated peritoneal dialysis and continuous ambulatory peritoneal dialysis on health-related quality of life, sleep quality, and depression. Hemodial Int. 2010;14(4):515-22. [CrossRef] [PubMed]
  17. Eryavuz N, Yuksel S, Acarturk G, et al. Comparison of sleep quality between hemodialysis and peritoneal dialysis patients. Int Urol Nephrol. 2008;40(3):785-91. [CrossRef] [PubMed]
  18. Bro S, Bjorner JB, Tofte-Jensen P, et al. A prospective, randomized multicenter study comparing APD and CAPD treatment. Perit Dial Int. 1999;19(6):526-33. [PubMed]
  19. Eghbali M, Shahqolian N, Nazari F, Babaee S. Comparing problems of patients with chronic renal failure undergoing hemodialysis and peritoneal dialysis referring to medical university's hospitals. Iran J Nurs Midwifery Res. 2009;14(1):1-5.
  20. Losso RL, Minhoto GR, Riella MC. Sleep disorders in patients with end-stage renal disease undergoing dialysis: comparison between hemodialysis, continuous ambulatory peritoneal dialysis and automated peritoneal dialysis. Int Urol Nephrol. 2015;47(2):369-75. [CrossRef] [PubMed]
  21. Baldwin CM, Choi M, McClain DB, Celaya A, Quan SF. Spanish translation and cross-language validation of a sleep habits questionnaire for use in clinical and research settings. J Clin Sleep Med. 2012;8(2):137-46. [CrossRef] [PubMed]
  22. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540-5. [CrossRef] [PubMed]
  23. Ferrer M, Vilagut G, Monasterio C, Montserrat JM, Mayos M, Alonso J. Measurement of the perceived impact of sleep problems: the Spanish version of the functional outcomes sleep questionnaire and the Epworth sleepiness scale. Med Clin (Barc). 1999;113(7):250-5. [PubMed]
  24. Ware JE,Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473-83. [CrossRef] [PubMed]
  25. Zúniga AM, Carrillo-Jiménez TG, Fos JP, Gandek B, Medina-Moreno M. Evaluación del estado de salud con la Encuesta SF-36: resultados preliminares en México. Salud Pública de México. 1999;41(2):110-8. [CrossRef] [PubMed]
  26. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. J Health Econ. 2002;21(2):271-92. [CrossRef]
  27. Davison SN, Jhangri GS, Feeny DH. Comparing the health utilities index mark 3 (HUI3) with the short form-36 preference-based SF-6D in chronic kidney disease. Value Health. 2009;12(2):340-5. [CrossRef] [PubMed]
  28. Dehesa-Lopez E, Correa-Rotter R, Olvera-Castillo D, Gonzalez-Parra C, Baizabal-Olarte R. Clinical, dialytic, and laboratory factors associated with poor health-related quality of life in Mexican patients on hemodialysis. Rev Invest Clin. 2016;68(4):192-200. [PubMed]
  29. Kim JH, Duffy JF. Circadian rhythm sleep-wake disorders in older adults. Sleep Med Clin. 2018;13(1):39-50. [CrossRef] [PubMed]
  30. Klink M, Quan SF. Prevalence of reported sleep disturbances in a general adult population and their relationship to obstructive airways diseases. Chest. 1987;91(4):540-6. [CrossRef] [PubMed]
  31. Ohayon MM, Zulley J, Guilleminault C, Smirne S, Priest RG. How age and daytime activities are related to insomnia in the general population: consequences for older people. J Am Geriatr Soc. 2001;49(4):360-6. [CrossRef] [PubMed]
  32. Fukuhara S, Lopes AA, Bragg-Gresham JL, et al. Health-related quality of life among dialysis patients on three continents: the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2003;64(5):1903-10. [CrossRef] [PubMed]
  33. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260-72. [CrossRef] [PubMed]
  34. Wu AW, Fink NE, Marsh-Manzi JV, et al. Changes in quality of life during hemodialysis and peritoneal dialysis treatment: generic and disease specific measures. J Am Soc Nephrol. 2004;15(3):743-53. [CrossRef] [PubMed]
  35. de Wit GA, Merkus MP, Krediet RT, de Charro FT. A comparison of quality of life of patients on automated and continuous ambulatory peritoneal dialysis. Perit Dial Int . 2001;21(3):306-12. [PubMed]
  36. Caballero-Morales S, Trujillo-Garcia JU, Welsh-Orozco U, Hernandez-Cruz ST, Martinez-Torres J. Calidad de vida en pacientes con hemodiálisis, diálisis peritoneal continua ambulatoria y automatizada. Arch Med Fam. 2006;8(3):163-8.

Cite as: Reynaga-Ornelas L, Baldwin CM, Arcoleo K, Quan SF. Impacto del sueño y la modalidad de diálisis sobre la calidad de vida en una población. Southwest J Pulm Crit Care. 2020;20(3):105-18. doi: https://doi.org/10.13175/swjpcc019-20 PDF 

Tuesday
Jan142020

The Effect of CPAP on HRQOL as Measured by the Quality of Well-Being Self-Administered Questionnaire (QWB-SA)

Salma Batool-Anwar, MD, MPH1
Olabimpe Omobomi, MD, MPH1
Stuart F. Quan, MD1,2

1Division of Sleep and Circadian Disorders Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA, 2Arizona Respiratory Center, University of Arizona College of Medicine, Tucson, AZ.

 

Abstract

Background: To examine the effect of continuous positive airway pressure (CPAP) on Health-related quality of life (HRQoL) as measured by the Quality of Well Being Self-Administered questionnaire (QWB-SA).

Methods: Participants from The Apnea Positive Pressure Long-term Efficacy Study (APPLES); a 6-month multicenter randomized, double-blinded intention to treat study, were included in this analysis. The participants with an apnea-hypopnea index >10 events/hour initially randomized to CPAP or Sham group were asked to complete QWB-SA at baseline, 2, 4, and 6-month visits.

Results: There were no group differences among either the CPAP or Sham groups. Mean age was 52±12 (SD] years, AHI 40±25 events/hr, BMI 32±7.1 kg/m2, and Epworth Sleepiness Score (ESS) 10±4 of 24 points. QWB-SA scores were available at baseline, and 2, 4 & 6 months after treatment in CPAP (n 558) and Sham CPAP (n 547) groups. There were no significant differences in QWB scores among mild, moderate or severe OSA participants at baseline. Modest improvement in QWB scores was noted at 2, 4 and 6- months among both Sham and CPAP groups (P <0.05).  However, no differences were observed between Sham CPAP and CPAP at any time point. Comparison of the QWB-SA data from the current study with published data in populations with chronic illnesses demonstrated that the impact of OSA is no different than the effect of AIDS and arthritis.

Conclusion: Although the QoL measured by the QWB-SA was impaired in OSA it did not have direct proportionality to OSA severity.

Introduction

Obstructive Sleep Apnea (OSA) is characterized by recurrent episodes of upper airway narrowing and oxygen desaturation with resultant frequent nighttime awakenings and daytime sleepiness (1). A strong association between OSA and obesity has been described (2), and with the global epidemic of obesity (3), the prevalence of OSA is anticipated to increase. Recent studies have reported an increase in prevalence from 22 to 37% among men, and 17 to 50% among women (4).

Health related quality of life (HRQoL) relates to a World Health Organization definition of health comprised of physical, mental, spiritual and social wellbeing (5). A variety of questionnaires are used in epidemiologic studies to assess quality of life (QoL). Studies demonstrate that QoL is worse in persons with OSA (6). Continuous positive airway pressure (CPAP) is the gold standard for treating OSA and improves daytime sleepiness among adherent patients (7). However, studies examining the effect of CPAP on quality of life have not found consistent results (8,9). These discrepancies are attributed to the fact that there are two types of questionnaires which are used to assess QoL; generic or disease specific. Utilizing data from the Apnea Positive Pressure long term Efficacy Study (APPLES), a randomized controlled trial of CPAP vs Sham CPAP, we analyzed whether CPAP improved HRQoL using the self-administered version of the Quality of Well-Being Scale (QWB-SA), a well-validated generic HRQoL instrument, that has not been validated in OSA.

Materials and Methods

 
Study Population and Protocol. APPLES was a 6-month multicenter, randomized, double-blinded, 2-arm, sham-controlled, intention-to-treat study of CPAP efficacy on three domains of neurocognitive function in OSA. A detailed description of the protocol has previously been published (10). Briefly, the participants were recruited either through local advertisement or from those attending sleep clinics for evaluation of possible OSA. Symptoms indicative of OSA were used to screen potential participants. The initial clinical evaluation included administering informed consent and screening questionnaires as well as history and physical examination and medical assessment by a study physician. Participants subsequently returned 2-4 weeks later for a baseline 24-h sleep laboratory visit, during which polysomnography (PSG) was performed to confirm the diagnosis followed by a day of neurocognitive, mood, sleepiness, and QoL testing. Inclusion criteria have been published previously and included age ≥ 18 years and a clinical diagnosis of OSA, as defined by the American Academy of Sleep Medicine (AASM) criteria. Only participants with an apnea-hypopnea index (AHI) ≥ 10 by PSG were randomized to CPAP or sham CPAP and continued in the APPLES study. Exclusion criteria included previous treatment for OSA with CPAP or surgery, oxygen saturation on the baseline PSG <75% for >10% of the recording time, history of a motor vehicle accident related to sleepiness within the past 12 months, presence of several chronic medical conditions, use of various medications known to affect sleep or neurocognitive function, and other health and social factors that may impact standardized testing procedures (e.g., shift work). After randomization, participants underwent a CPAP or sham CPAP titration and were followed for 6 months on their assigned intervention. Subsequent study visits occurred at 2, 4 and 6 months after the titration PSG. The APPLES study was approved by an institutional review board for human studies at each clinical site; informed consent was obtained from all participants at the time of enrollment as previously described.

Quality of Well-Being Scale (QWB). The QWB is a comprehensive measure of HRQoL. It has been extensively validated and can be used to calculate quality-adjusted life years (QALYs) (11). Because of its complexity, a self-administered version, the QWB-SA was developed (12). The questionnaire is sensitive to changes at the higher levels of functioning and can also produce estimates of QALY for cost-effectiveness analyses. The QWB-SA includes 5 sections. The first assesses the presence/absence of 19 chronic symptoms or problems (e.g., blindness, speech problems). These chronic symptoms are followed by 25 acute (or more transient) physical symptoms (e.g. headache, coughing, pain), and 14 mental health symptoms and behaviors (e.g., sadness, anxiety, irritation). The remaining sections of the QWB-SA include assessments of mobility (including use of transportation), physical activity (e.g., walking and bending over) and social activity including completion of role expectations (e.g., work, school, or home). Scores from each subscale are coupled with population derived weights to yield one composite score ranging from 0.09 (lowest possible health state to 1 for perfect health, with zero meaning death.

The QWB-SA was administered at the baseline study visit and at each subsequent study visit. At each visit, we collected three scores (QWB1, QWB2, and QWB3) corresponding to the day of the survey and the immediate 2 previous days. These scores included combinations of questions from the 5 sections as follows:

  • Part I: Acute and chronic symptoms
  • Part II: Self Care
  • Part III: Mobility
  • Part IV: Physical activity
  • Part V: Social activity

To calculate the QWB-SA the scores for each section were computed and combined according to guidelines provided by the University of California, San Diego (UCSD) Health Services Research Center to yield the QWB score for each day. From the daily scores, the QWB Average Score was derived as the mean of QWB1+QWB2+QWB3. We used the QWB Average Score in subsequent analyses.

Polysomnography (PSG). The PSG montage included monitoring of the electroencephalogram (EEG, C3-A2 or C4-A1, O2-A1 or O1-A2), electrooculogram (EOG, ROC-A1, LOC-A2), chin and anterior tibialis electromyograms (EMG), heart rate by 2-lead electrocardiogram, snoring intensity (anterior neck microphone), nasal pressure (nasal cannula), nasal/oral thermistor, thoracic and abdominal movement (inductance plethysmography bands), and oxygen saturation (pulse oximetry). All PSG records were electronically transmitted to a centralized data coordinating and PSG reading center. Sleep and wakefulness were scored using Rechtschaffen and Kales criteria (13). Apneas and hypopneas were scored using the American Academy of Sleep Medicine Task Force diagnostic criteria (14). Briefly, an apnea was defined by a clear decrease (> 90%) from baseline in the amplitude of the nasal pressure or thermistor signal lasting ≥ 10 sec. Hypopneas were identified if there was a clear decrease (> 50% but ≤ 90%) from baseline in the amplitude of the nasal pressure or thermistor signal, or if there was a clear amplitude reduction of the nasal pressure signal ≥ 10 sec that did not reach the above criterion, but was associated with either an oxygen desaturation > 3% or an arousal. Obstructive events were scored if there was a persistence of chest or abdominal respiratory effort. Central events were noted if no displacement occurred on either the chest or abdominal channels. The AHI was computed as the number of apneas and hypopneas divided by the total sleep time. Sleep apnea was classified as mild (AHI 10.0 to 15.0 events per hour), moderate (AHI 15.1 to 30.0 events per hour), and severe (AHI more than 30 events per hour) (14).

CPAP Adherence. Nightly use of CPAP was downloaded from the device and was assessed at 2, 4, 6-month intervals. The participants were considered adherent if CPAP use was ≥ 4 hours per night for >70% of nights.

Epworth Sleepiness Scale (ESS). The ESS is a validated self-completion tool that asks subjects to rate the likelihood of falling asleep in eight common situations using four ordinal categories ranging from 0 (no chance) to 3 (high chance) (15). Scores range from 0 to 24 with a score >10 suggesting EDS (15).

Calgary Sleep Apnea Quality of Life Index (SAQLI). The SAQLI was developed as a sleep apnea specific quality of life instrument (16). It is a 35-item instrument that captures the adverse impact of sleep apnea on 4 domains: daily functioning, social interactions, emotional functioning and symptoms. Items are scored on a 7- point scale with “all of the time” and “not at all” being the most extreme responses. Item and domain scores are averaged to yield a composite total score between 1 and 7. Higher scores represent a better quality of life.

Statistical Analysis. Simple linear and multiple regression models were used to estimate the degree to which variables correlated with QWB scores.  We examined the association between the QWB-SA and the following variables: OSA severity as measured by the AHI, sleepiness as assessed by ESS, age, and baseline body mass index (BMI, kg/m2). Severity of OSA in this study was defined according to the AHI as follows: Mild (10-<15 /h), Moderate (15-<30 /h), Severe (>30 /h). Changes in QWB-SA over the duration of the study were analyzed using a mixed model repeated measures analysis of variance with participants stratified by their randomization group (CPAP or Sham CPAP). Analyses were performed using STATA (version 11, StataCop TX USA) and IBM SPSS v24 (Armonk, NY). Finally, we compared the sample means to the normative means using GraphPad Prism8.

Results

Initially, 558 participants were randomized to CPAP and 547 to Sham CPAP. As shown in Table 1, age, gender, ethnicity, body mass index (BMI, kg/m2), AHI, and ESS were similar between the CPAP and Sham CPAP groups.

Table 1. Baseline Characteristics.

SD: Standard Deviation, BMI: Body Mass Index, AHI: Apnea Hypopnea Index, ESS: Epworth Sleepiness Scale, SAQLI: Sleep Apnea Quality of Life Index, QWB: Quality of wellbeing

Men comprised of 50% of the study population and the population was generally obese (CPAP: BMI 32.4 ± 7.3; Sham: BMI 32.1 ± 6.9 kg/m2). The participants overall had at least 15 years of education, and over 50% of the participants were either married or living with someone. The sample population did not report severe excessive daytime sleepiness with the reported ESS approximately 10 in both the CPAP and SHAM groups. Similarly, there were no significant differences in SAQLI score, total sleep time or arousal index among the two treatment groups.

Scores for the QWB-SA were available at baseline and 2, 4 and 6 months after treatment in both groups. As shown in Table 2, there were no significant differences in QWB-SA at baseline between both groups.

Table 2. Mixed model analysis for the effect of time on QWB average score among CPAP and SHAM groups (N=1104).

*QWB-SA scores improved in both groups over the 6 months of follow-up, p<0.05.

In addition, scores among mild, moderate or severe OSA participants at baseline also were not different (data not shown). Modest improvement in QWB scores was noted at 2, 4 and 6- month among both Sham and CPAP groups (P<0.05). However, no differences were observed between Sham CPAP and CPAP at any time point. Furthermore, multiple regression analyses stratified by OSA severity, gender, and mean adherence to CPAP or Sham CPAP suggested significant improvement in QWB scores only among women with severe OSA in the CPAP group (data not shown, P <0.05).

Table 3 shows comparisons of the QWB-SA from the current study with published data in populations with acquired immune deficiency syndrome (AIDS), chronic obstructive lung disease (COPD), arthritis and prostate cancer (17-20).

Table 3. Comparison of sample mean to normative means.

QWB: Quality of Wellbeing, CF: Cystic Fibrosis, OSA: obstructive Sleep Apnea, AIDS: Acquired Immunodeficiency syndrome, COPD: Chronic Obstructive pulmonary Disease.

The impact of OSA is not different than the effect of AIDS and arthritis and only slightly less than with COPD and prostate cancer.

Discussion

In this study, we analyzed the effect of CPAP therapy on QoL using the QWB-SA questionnaire. We found that the cross-sectional mean QWB-SA scores were comparable to the scores found in other chronic illnesses (COPD, arthritis, cystic fibrosis, prostate cancer, and AIDS) (17-20) indicating that quality of life is adversely affected by sleep apnea similar to these chronic conditions. Although the QWB-SA modestly declined over a treatment duration of 6 months, the instrument was unable to distinguish any differences between CPAP and sham CPAP. Moreover, these findings remained after stratifying based on PAP adherence and OSA severity.

Assessment of quality of life (QoL) is an integral part of OSA management and various scales are being used by researchers. Studies using these instruments generally find that QoL is impaired in persons with OSA (6). However, to our knowledge, there have not been previous studies using the QWB-SA in a population with OSA. Our findings which demonstrate that the QWB-SA is low in OSA are consistent with these prior investigations.  However, in contrast to our observations, some but not all studies have noted a greater impact of OSA on QoL in those with more severe disease. For example, Baldwin et al. (21) in the Sleep Heart Health Study found that there was a higher risk of having an impact on the vitality subscale of SF-36 with greater OSA severity. In contradistinction, Fornas et al. (22) using the Nottingham Health Profile found no relationship between OSA severity and differences in QoL in a moderate size group of OSA patients. This discrepancy may relate to whether a general population as in Baldwin et al or a clinical population as in Fornas et al. was studied. Additionally, instruments used to quantify QoL may assess different domains, thus leading to different conclusions. Thus, while the QWB-SA can detect that QoL is impaired in those with OSA, it does not have the capability to distinguish subtleties related to differences in OSA severity.

At baseline, we observed that scores on the QWB-SA were comparable to those found for patients with AIDS (23) and arthritis (20) but were slightly higher than those with COPD (18), cystic fibrosis (CF) (24), and prostate cancer (19). They are notably better than chronic renal failure on hemodialysis (0.49) (25). Thus, it appears that the impact of OSA on QoL is approximately the same as several but not all other chronic conditions that are viewed by the general public as having considerably greater health consequences.

Contrary to its use in cystic fibrosis and AIDS where QWB-SA has validity as an outcome measure (18-24) we did not find that the QWB-SA was able to detect changes in QoL with the use of CPAP. This observation also is contradistinction to results from the CPAP Apnea Trial North American Program using the Functional Outcomes of Sleep Questionnaire (FOSQ) as well as analyses of the Sleep Apnea Quality of Life Inventory (SAQLI) in the APPLES (26,27) study. In contrast to QWB-SA, both the FOSQ and SAQLI are sleep specific QoL instruments. Thus, the results of our study provide additional evidence that a generic HRQoL instrument may not be sensitive to the specific QoL domains impacted by treatment of OSA using CPAP. Other studies have concluded that changes in QoL in response to CPAP therapy may vary depending on the QoL measure used and that some measures may be more sensitive to detecting changes to QoL with CPAP therapy than others (28). A randomized control trial with a total of 1256 patients comparing various QoL tools concluded that generic QoL tools may not be sufficient at detecting important changes in QoL in OSA patients as CPAP may not improve general QoL scores but rather specific QoL domains. For instance, in that analysis, the SF-36 tool demonstrated positive changes only in physical function and energy levels with CPAP (29). In contrast, a study comparing 2 sleep specific QoL instruments to the generic 36-item short form survey (SF-36), found that the FOSQ and SAQLI provided unique information about health outcomes in treated OSA patients (30) and correlated well with the SF36 survey domains. In that study, the FOSQ was found to be more sensitive to differences in CPAP adherence than the SAQLI.

To our knowledge, this is the first study examining the effect of CPAP on QoL using the QWB-SA questionnaire. A major strength of the study is that it utilized data from a large multicenter randomized controlled trial with follow up and interval documentation of CPAP adherence for up to 6 months. However, there were several limitations. First, the study population was a mixture of patients recruited from sleep clinics and the general population; this may have resulted in a differential impact on QoL. Second, overall adherence to both CPAP and sham CPAP was relatively poor although not inconsistent with the results from other studies. Finally, QoL was assessed using the average QWB-SA total scores and hence it is unclear whether there may have been improvements in specific domains over time with CPAP treatment.

In conclusion, despite the limitations, we found that QoL measured by the QWB-SA was impaired in OSA but was not found to have direct proportionality to OSA severity. Furthermore, it was not sufficiently sensitive for detecting QoL changes in OSA patients on CPAP therapy. Our data support the use of sleep apnea specific QoL questionnaires for measurement of QoL after initiation of CPAP.

Acknowledgments

The Apnea Positive Pressure Long-term Efficacy Study (APPLES) study was funded by contract 5UO1-HL-068060 from the National Heart, Lung and Blood Institute. The APPLES pilot studies were supported by grants from the American Academy of Sleep Medicine and the Sleep Medicine Education and Research Foundation to Stanford University and by the National Institute of Neurological Disorders and Stroke (N44-NS-002394) to SAM Technology. In addition, APPLES investigators gratefully recognize the vital input and support of Dr. Sylvan Green, who died before the results of this trial were analyzed, but was instrumental in its design and conduct.

Administrative Core: Clete A. Kushida, MD, PhD; Deborah A. Nichols, MS; Eileen B. Leary, BA, RPSGT; Pamela R. Hyde, MA; Tyson H. Holmes, PhD; Daniel A. Bloch, PhD; William C. Dement, MD, PhD

Data Coordinating Center: Daniel A. Bloch, PhD; Tyson H. Holmes, PhD; Deborah A. Nichols, MS; Rik Jadrnicek, Microflow, Ric Miller, Microflow Usman Aijaz, MS; Aamir Farooq, PhD; Darryl Thomander, PhD; Chia-Yu Cardell, RPSGT; Emily Kees, Michael E. Sorel, MPH; Oscar Carrillo, RPSGT; Tami Crabtree, MS; Booil Jo, PhD; Ray Balise, PhD; Tracy Kuo, PhD

Clinical Coordinating Center: Clete A. Kushida, MD, PhD, William C. Dement, MD, PhD, Pamela R. Hyde, MA, Rhonda M. Wong, BA, Pete Silva, Max Hirshkowitz, PhD, Alan Gevins, DSc, Gary Kay, PhD, Linda K. McEvoy, PhD, Cynthia S. Chan, BS, Sylvan Green, MD

Clinical Centers

Stanford University: Christian Guilleminault, MD; Eileen B. Leary, BA, RPSGT; David Claman, MD; Stephen Brooks, MD; Julianne Blythe, PA-C, RPSGT; Jennifer Blair, BA; Pam Simi, Ronelle Broussard, BA; Emily Greenberg, MPH; Bethany Franklin, MS; Amirah Khouzam, MA; Sanjana Behari Black, BS, RPSGT; Viola Arias, RPSGT; Romelyn Delos Santos, BS; Tara Tanaka, PhD

University of Arizona: Stuart F. Quan, MD; James L. Goodwin, PhD; Wei Shen, MD; Phillip Eichling, MD; Rohit Budhiraja, MD; Charles Wynstra, MBA; Cathy Ward, Colleen Dunn, BS; Terry Smith, BS; Dane Holderman, Michael Robinson, BS; Osmara Molina, BS; Aaron Ostrovsky, Jesus Wences, Sean Priefert, Julia Rogers, BS; Megan Ruiter, BS; Leslie Crosby, BS, RN

St. Mary Medical Center: Richard D. Simon Jr., MD; Kevin Hurlburt, RPSGT; Michael Bernstein, MD; Timothy Davidson, MD; Jeannine Orock-Takele, RPSGT; Shelly Rubin, MA; Phillip Smith, RPSGT; Erica Roth, RPSGT; Julie Flaa, RPSGT; Jennifer Blair, BA; Jennifer Schwartz, BA; Anna Simon, BA; Amber Randall, BA

St. Luke's Hospital: James K. Walsh, PhD, Paula K. Schweitzer, PhD, Anup Katyal, MD, Rhody Eisenstein, MD, Stephen Feren, MD, Nancy Cline, Dena Robertson, RN, Sheri Compton, RN, Susan Greene, Kara Griffin, MS, Janine Hall, PhD

Brigham and Women's Hospital: Daniel J. Gottlieb, MD, MPH, David P. White, MD, Denise Clarke, BSc, RPSGT, Kevin Moore, BA, Grace Brown, BA, Paige Hardy, MS, Kerry Eudy, PhD, Lawrence Epstein, MD, Sanjay Patel, MD

Sleep HealthCenters for the use of their clinical facilities to conduct this research

Consultant Teams

Methodology Team: Daniel A. Bloch, PhD, Sylvan Green, MD, Tyson H. Holmes, PhD, Maurice M. Ohayon, MD, DSc, David White, MD, Terry Young, PhD

Sleep-Disordered Breathing Protocol Team: Christian Guilleminault, MD, Stuart Quan, MD, David White, MD

EEG/Neurocognitive Function Team: Jed Black, MD, Alan Gevins, DSc, Max Hirshkowitz, PhD, Gary Kay, PhD, Tracy Kuo, PhD

Mood and Sleepiness Assessment Team: Ruth Benca, MD, PhD, William C. Dement, MD, PhD, Karl Doghramji, MD, Tracy Kuo, PhD, James K. Walsh, PhD

Quality of Life Assessment Team: W. Ward Flemons, MD, Robert M. Kaplan, PhD

APPLES Secondary Analysis-Neurocognitive (ASA-NC) Team: Dean Beebe, PhD, Robert Heaton, PhD, Joel Kramer, PsyD, Ronald Lazar, PhD, David Loewenstein, PhD, Frederick Schmitt, PhD

National Heart, Lung, and Blood Institute (NHLBI)

Michael J. Twery, PhD, Gail G. Weinmann, MD, Colin O. Wu, PhD

Data and Safety Monitoring Board (DSMB)

Seven-year term: Richard J. Martin, MD (Chair), David F. Dinges, PhD, Charles F. Emery, PhD, Susan M. Harding MD, John M. Lachin, ScD, Phyllis C. Zee, MD, PhD

Other term: Xihong Lin, PhD (2 y), Thomas H. Murray, PhD (1 y).

Abbreviations

  • AASM: American Academy of Sleep Medicine
  • AHI: Apnea Hypopnea Index
  • AIDS: Acquired immune deficiency syndrome
  • APPLES: Apnea Positive Pressure Long-term Efficacy Study
  • BMI: Body mass Index
  • CF: Cystic Fibrosis
  • COPD: Chronic obstructive pulmonary disease
  • CPAP: Continuous positive airway pressure.
  • EDS: Excessive daytime sleepiness
  • EEG: Electroencephalogram
  • ESS: Epworth sleepiness scale
  • EMG: Electromyogram
  • EOG: Electrooculogram
  • FOSQ: Functional Outcomes of Sleep Questionnaire
  • HRQoL: health related quality of life
  • OSA: Obstructive Sleep apnea
  • PSG: polysomnograpgy
  • QALY: Quality Adjusted life years
  • QoL: Quality of Life
  • QWB: Quality of well being
  • QWB-SA: Quality of well being-Self administered.
  • SAQLI: Sleep apnea quality of life Index
  • SD: Standard deviation

References

  1. American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 1999;22:667-89. (CrossRef] (PubMed]
  2. Young T, Peppard Pe Fau-Taheri S, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol 2005;99:1592-9.(CrossRef] (PubMed]
  3. Dietz WH. The response of the US Centers for Disease Control and Prevention to the obesity epidemic. Annu Rev Public Health. 2015;36:575-96. (CrossRef] (PubMed]
  4. Franklin KA, Lindberg E. Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J Thorac Dis. 2015;7:1311-22. (CrossRef] (PubMed]
  5. https://www.healthypeople.gov/2020/about/foundation-health-measures/Health-Related-Quality-of-Life-and-Well-Being
  6. Yang EH, Hla KM, McHorney CA, Havighurst T, Badr MS, Weber S. Sleep apnea and quality of life. Sleep. 2000;23:535-41. (CrossRef] (PubMed]
  7. Epstein LJ, Kristo D Fau - Strollo PJ, Jr., Strollo PJ Jr, Fau-Friedman N, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5:263-76. (PubMed]
  8. Windler S, Rowland S, Antic NA, et al. The effect of CPAP in normalizing daytime sleepiness, quality of life, and neurocognitive function in patients with moderate to severe OSA. Sleep. 2011;34:111-9. (CrossRef] (PubMed]
  9. McArdle N, Kingshott R, Engleman HM, Mackay TW, Douglas NJ. Partners of patients with sleep apnoea/hypopnoea syndrome: effect of CPAP treatment on sleep quality and quality of life. Thorax. 2001;56:513-8. (CrossRef] (PubMed]
  10. Kushida CA, Nichols DA, Quan SF, et al. The apnea positive pressure long-term efficacy study (APPLES): rationale, design, methods, and procedures. J Clin Sleep Med. 2006;2:288-300. (PubMed]
  11. Frosch DL, Kaplan RM, Ganiats TG, Groessl EJ, Sieber WJ, Weisman MH. Validity of self-administered quality of well-being scale in musculoskeletal disease. Arthritis Rheum 2004;51:28-31. (CrossRef] (PubMed]
  12. Kaplan RM, Sieber WJ, Ganiats TG. The quality of well-being scale: comparison of the interviewer-administered version with a self-administered questionnaire. Psychol Health. 1997;12:783-91. (CrossRef]
  13. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Public Health Service,1968 - ci.nii.ac.jp
  14. Flemons WW, Buysse D, Redline S, Pack A. The report of American Academy of Sleep Medicine Task Force. Sleep related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 1999;22:667-89. (CrossRef] (PubMed]
  15. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540-5. (CrossRef] (PubMed]
  16. Flemons W, Reimer MA. Development of a disease-specific health-related quality of life questionnaire for sleep apnea. Am J Respir Crit Care Med. 1998;158:494-503. (CrossRef] (PubMed]
  17. Kaplan RM, Anderson JP, Wu AW, Wm. Christopher M, Kozin F, Orenstein D. The quality of well-being scale: applications in AIDS, cystic fibrosis, and arthritis. Med Care. 1989;27:S27-S43. (CrossRef] (PubMed]
  18. Kaplan RM, Atkins CJ, Timms R. Validity of a quality of well-being scale as an outcome measure in chronic obstructive pulmonary disease. J Chronic Dis. 1984;37:85-95. (CrossRef] (PubMed]
  19. Frosch D, Porzsolt F, Heicappell R, et al. Comparison of German language versions of the QWB-SA and SF-36 evaluating outcomes for patients with prostate disease. Quality of Life Research. 2001;10:165-73. (CrossRef] (PubMed]
  20. Groessl EJ, Kaplan RM, Cronan TA. Quality of well-being in older people with osteoarthritis. Arthritis Care Res. 2003;49:23-28. (CrossRef] (PubMed]
  21. Baldwin CM, Griffith KA, Nieto FJ, O'Connor GT, Walsleben JA, Redline S. The association of sleep-disordered breathing and sleep symptoms with quality of life in the Sleep Heart Health Study. Sleep. 2001;24:96-105. (CrossRef] (PubMed]
  22. Fomas C, Ballester E, Arteta E, Ricou C, Diaz A, Fernandez A, Alonso J, Montserrat JM. Measurement of general health status in obstructive sleep apnea hypopnea patients. Sleep. 1995;18:876-79. (CrossRef] (PubMed]
  23. Anderson JP, Kaplan RM, Coons SJ, Schneiderman LJ. Comparison of the quality of well-being scale and the SF-36 results among two samples of ill adults: AIDS and other illnesses. J Clin Epidemiol. 1998;51:755-62. (CrossRef] (PubMed]
  24. Munzenberger PJ, Van Wagnen CA, Abdulhamid I, Walker PC. Quality of life as a treatment outcome in patients with cystic fibrosis. Pharmacotherapy. 1999;19:393-8. (CrossRef] (PubMed]
  25. Saban KL, Stroupe KT, Bryant FB, Reda DJ, Browning MM, Hynes DM. Comparison of health-related quality of life measures for chronic renal failure: quality of well-being scale, short-form-6D, and the kidney disease quality of life instrument. Quality of Life Research. 2008;17:1103-15. (CrossRef] (PubMed]
  26. Terri EW, Cristina M, Greg M, et al. Continuous positive airway pressure treatment of sleepy patients with milder obstructive sleep apnea. Am J Respir Crit Care Med 2012; 186: 677-83. (CrossRef] (PubMed]
  27. Batool-Anwar S, Goodwin JL, Kushida CA, et al. Impact of continuous positive airway pressure (CPAP) on quality of life in patients with obstructive sleep apnea (OSA). J Sleep Res. 2016; 25:731-8. (CrossRef] (PubMed]
  28. Antic NA, Catcheside P, Fau-Buchan C, Buchan C, Fau-Hensley M, et al. The effect of CPAP in normalizing daytime sleepiness, quality of life, and neurocognitive function in patients with moderate to severe OSA. Sleep. 2011;34:111-9. (CrossRef] (PubMed]
  29. Jing J, Huang T, Cui W, Shen H. Effect on quality of life of continuous positive airway pressure in patients with obstructive sleep apnea syndrome: a meta-analysis. Lung. 2008;186:131-44. (CrossRef] (PubMed]
  30. Billings ME, Rosen CL, Auckley D, et al. Psychometric performance and responsiveness of the functional outcomes of sleep questionnaire and sleep apnea quality of life index in a randomized trial: the HomePAP study. Sleep. 2014;37:2017-24. (CrossRef] (PubMed]

Cite as: Batool-Anwar S, Omobomi O, Quan SF. The effect of CPAP on HRQOL as Measured by the quality of Well-Being Self-Administered Questionnaire (QWB-SA). Southwest J Pulm Crit Care. 2020;20(1):29-40. doi: https://doi.org/10.13175/swjpcc070-19 PDF 

Sunday
Dec292019

Declaración de posición: Reducir la fatiga asociada con la deficiencia de sueño y las horas de trabajo en enfermeras

Posición de la Academia Estadounidense de Enfermería sobre políticas

Claire C. Caruso, PhD, RN, FAANa*, Carol M. Baldwin, PhD, RN, CHTP, CT, AHN-BC, FAANb, Ann Berger, PhD, APRN, AOCNS, FAANb, Eileen R. Chasens, PhD, RN, FAANb, Carol Landis, PhD, RN, FAANb, Nancy S. Redeker, PhD, RN, FAHA, FAANb, Linda D. Scott, PhD, RN, NEA-BC, FAANc, Alison Trinkoff, ScD, RN, FAANb

a Panel de expertos en comportamientos relacionados con la salud

b Academia Estadounidense de Enfermería

c Intermediaria del Consejo de la Academia para el panel de expertos en comportamientos relacionados con la salud

*Autora para la correspondencia

Editor's Note: This is a Spanish translation of the original article which was titled "Position statement: Reducing fatigue associated wtih sleep deficiency and work hours in nurses" published in Nursing Oulook  2017 Nov - Dec;65(6):766-8 and is reproduced with the permission of Elsevier.

La Academia Estadounidense de Enfermería promueve prácticas de gestión en organizaciones de atención médica, y estrategias en la vida personal de enfermeros y enfermeras, que respaldan la salud del sueño en estos profesionales y, como resultado, permiten contar con personal de enfermería alerta, que esté en condiciones de realizar sus labores y tenga una mayor posibilidad de vivir una vida saludable. La sociedad precisa servicios de enfermería esenciales a toda hora. Por consiguiente, el trabajo por turnos y las largas horas laborales son comunes en las organizaciones de atención médica y afectan negativamente a un considerable porcentaje de enfermeros y enfermeras. Trabajar de noche y en horarios irregulares afectan el funcionamiento humano, que se rige por la necesidad de dormir y los ritmos circadianos. La dificultad que enfrenta el personal de enfermería que trabaja por turnos es la necesidad de trabajar de noche (cuando nuestros mecanismos funcionales promueven el sueño) y dormir durante el día (cuando nuestros mecanismos funcionales promueven la actividad). Cuando el trabajo por turnos se combina con largas horas de trabajo (p. ej., turnos de 12 o más horas) y lleva a la falta de sueño o a la interrupción de los ritmos circadianos, los costos para la salud y la seguridad derivados de este conflicto con el funcionamiento humano son potencialmente significativos. La falta de sueño es un término amplio que incluye el sueño de duración inadecuada, el sueño de mala calidad, los trastornos del sueño sin tratar, y el sueño a destiempo que no está sincronizado con los ritmos circadianos. El sueño insuficiente puede afectar la disposición del personal de enfermería hacia el trabajo, su salud, seguridad y bienestar. Cada vez hay más evidencia de que los turnos largos, las rotaciones de turnos, los turnos dobles, así como los turnos vespertinos y nocturnos están asociados con varios riesgos para la salud y seguridad de estos profesionales, a corto y largo plazo (Instituto Nacional para la Seguridad y Salud Ocupacional [NIOSH]; NIOSH, Caruso, Geiger-Brown, Takahashi, Trinkoff y Nakata, 2015). Los enfermeros y las enfermeras que están cansados también corren el riesgo de cometer errores, relacionados con el cansancio, en la atención de los pacientes y poner a estos últimos en peligro (Bae y Fabry, 2014). Asimismo, estos riesgos se extienden a la familia del personal de enfermería, sus empleadores u organización de atención médica, y a la sociedad en general, cuando al estar cansados cometen errores en el trabajo y en el hogar, o chocan su vehículo por manejar somnolientos. Este peligro complejo requiere de una variedad de estrategias personales, del lugar de trabajo, y de salud pública para reducir estos riesgos. Lamentablemente, las personas que trabajan en organizaciones de atención médica quizás no entiendan por completo los riesgos para la salud y la seguridad que están asociados al cansancio y puede que no estén al tanto de las estrategias basadas en la evidencia para reducir estos riesgos. Sin embargo, la evidencia muestra que es posible limitar o modificar el impacto adverso que el trabajo por turnos y las largas horas laborales provoca en el personal de enfermería, al mejorar su sueño y reducir el cansancio.

Esta declaración de postura concuerda con tres de las metas estratégicas de la academia (Academia Estadounidense de Enfermería, 2017). (a) Influir en la creación e implementación de políticas que mejoren la salud de la población y logren la equidad en la salud. (b) Influir en el diseño de las prácticas a través de la ciencia de la enfermería para mejorar la salud de la población. (c) Posicionar a la academia y a la profesión de enfermería para que lideren los cambios y conduzcan las políticas y prácticas a fin de mejorar la salud y la atención médica. Estos esfuerzos tendrán un impacto en la fuerza laboral de enfermería, así como en la población de pacientes y la amplia variedad de otras personas con las que el personal de enfermería interactúa en el trabajo, el hogar y durante sus viajes de ida y vuelta al trabajo. Varios estudios indican que el personal de enfermería que trabaja por turnos y largas horas laborales están en riesgo de cometer errores en la atención de los pacientes (Bae y Fabry, 2014). Según la Fundación para la Seguridad Vial de la AAA (Tefft, 2016), el riesgo de choques vehiculares muestra una relación de dosis-respuesta en función de la duración del sueño: menos de 4 horas de sueño en las últimas 24 horas aumentan el riesgo de choque 11.5 veces; 4 a 5 horas de sueño lo aumentan 4.3 veces; 5 a 6 horas de sueño lo aumentan 1.9 veces, y 6 a 7 horas de sueño lo aumentan 1.3 veces. RAND informa que el sueño insuficiente podría costarle a la economía general de los Estados Unidos una suma ascendente de $411 000 millones anuales (el 2.28 % de su producto interno bruto) debido a una variedad de impactos negativos, productividad reducida, y la pérdida de 1.2 millones de días laborales al año (Hafner, Stepanek, Taylor, Troxel y Van Stolk, 2016).

Un número creciente de organizaciones reconoce los amplios riesgos para la salud y la seguridad que están vinculados al trabajo por turnos, las largas horas laborales y el cansancio del trabajador, y están trabajando para reducir estos riesgos. Las agencias gubernamentales, las organizaciones profesionales y de servicio público, y los profesionales de seguridad en varias industrias se están ocupando de este tema crítico.

Los esfuerzos gubernamentales incluyen el trabajo realizado por NIOSH de los Centros para el Control y la Prevención de Enfermedades. NIOSH está comprometido desde hace tiempo a reducir los riesgos derivados de estas exigentes horas laborales mediante investigación, orientación y recomendaciones bien fundamentadas, alianzas estratégicas, y difusión de información para proteger a los trabajadores y a sus familias, empleadores y la comunidad (NIOSH, 2017).

Para el personal de enfermería, NIOSH creó un programa de educación continua en línea, la capacitación de NIOSH para personal de enfermería que trabaja por turnos y durante largas horas (NIOSH et ál., 2015). Esta capacitación confiere información sobre los riesgos, las razones por las cuales ocurren, y brinda estrategias para que el personal de enfermería y sus supervisores reduzcan estos riesgos. Otros esfuerzos gubernamentales incluyen a 20 estados de los Estados Unidos que prohíben o restringen las horas extras obligatorias del personal de enfermería (Asociación Estadounidense de Enfermería [ANA], 2011). Otro ejemplo es el de la Tríada de Rendimiento de Medicina del Ejército de los Estados Unidos (Medicina del Ejército de los Estados Unidos, 2016), cuya meta es mejorar la preparación de los soldados, aumentar su resiliencia y promover su salud. La Tríada de Rendimiento se concentra en tres comportamientos:

 (a) dormir bien, (b) hacer actividad física y (c) mejorar la alimentación. Un ejemplo adicional son las reglamentaciones federales de las horas de servicio para los modos de transporte y las plantas de energía nuclear. Estas reglamentaciones han estado vigentes por muchos años, con el fin de reducir el riesgo del público cuando los conductores de vehículos comerciales o los trabajadores de plantas de energía nuclear están cansados y cometen errores que ponen al público en peligro.

Varias organizaciones profesionales y de servicio público, como también los profesionales en el área de seguridad, cuentan con iniciativas diseñadas para abordar este peligro. La Asociación Estadounidense de Enfermería se ha ocupado activamente de este tema. En el 2014, difundió su declaración de postura revisada sobre el cansancio en el personal de enfermería, que promueve estrategias basadas en la evidencia para prevenir el cansancio y la somnolencia de estos profesionales, promover la salud, la seguridad y el bienestar de los profesionales en enfermería titulados, y asegurar resultados óptimos en los pacientes (ANA, 2014). Recientemente, la Asociación Estadounidense de Enfermería comenzó una iniciativa, Healthy Nurse, Healthy Nation (Enfermeros Saludables, Nación Saludable), que incluye promover la salud del sueño y prevenir el cansancio (ANA, 2016). La Organización Panamericana de la Salud/Organización Mundial de la Salud publicó el manual de capacitación "Su corazón, su vida", actualizado, del Instituto Nacional del Corazón, los Pulmones y la Sangre, de los Institutos Nacionales de la Salud, que contiene por primera vez una sesión sobre los trastornos del sueño y la promoción de la salud del sueño, con el fin de capacitar a los promotores, al personal de enfermería y a otros proveedores de atención médica de habla hispana acerca de la relación entre el sueño y la salud (Baldwin, 2014). Recientemente, el Consejo de Seguridad Nacional (2017) comenzó una nueva iniciativa para reducir los amplios riesgos asociados con el cansancio y el sueño inadecuado. Están abordando la salud y seguridad personal, como también los riesgos en el hogar, el trabajo, y en los caminos y las carreteras. Profesionales de seguridad y salud que trabajan en muchas industrias están incorporando en sus operaciones sistemas de gestión de riesgos relacionados con el cansancio (Lerman et ál., 2012). Estos sistemas integrales incluyen siete elementos: políticas de gestión; análisis de áreas vulnerables e institución de controles; sistemas de notificación para empleados, investigación de incidentes; capacitación para empleados y supervisores; manejo de trastornos del sueño; y un sistema de medidas correctivas y mejora continua.

La Academia Estadounidense de Enfermería reconoce que la práctica segura de la enfermería requiere que los proveedores de atención médica duerman durante el tiempo adecuado y que el sueño sea de calidad superior. El cansancio del personal de enfermería constituye un peligro para los pacientes debido al mayor riesgo de cometer errores; para otras personas en los caminos y las carreteras, cuando enfermeros y enfermeras cansados van y vuelven del trabajo, y para su propia salud y seguridad. Los supervisores y el personal de enfermería comparten la responsabilidad de reducir los riesgos vinculados al sueño insuficiente y el cansancio. Los supervisores tienen la responsabilidad de usar prácticas basadas en la evidencia al planificar los horarios laborales de sus empleados, y de establecer políticas, programas, prácticas y sistemas en el trabajo que promuevan la salud del sueño y una fuerza laboral alerta. El personal de enfermería tiene la responsabilidad de reservarse el tiempo suficiente para dormir, de adoptar prácticas y conductas personales, basadas en la evidencia, para maximizar el sueño y el estado de alerta, y de concientizar a las personas importantes en su vida para reducir las demandas conflictivas provenientes del trabajo y de las responsabilidades personales. La Academia Estadounidense de Enfermería apoya las iniciativas de las organizaciones de atención médica, de enfermeros y enfermeras en forma individual, y de las agencias gubernamentales y de salud pública para crear estrategias que mejoren la salud del sueño del personal de enfermería. Esto ayudará a garantizar que estos profesionales estén en condiciones de proveer una excelente atención a los pacientes a toda hora, y también los ayudará a mantener su propia salud, seguridad y sensación de bienestar. La Academia Estadounidense de Enfermería recomienda las siguientes medidas:

  • Instar al personal de enfermería y a los empleadores de las organizaciones de atención médica a informarse sobre los riesgos para la salud vinculados al trabajo por turnos y las largas horas laborales, y sobre las estrategias basadas en la evidencia para reducir estos riesgos.
  • Instar a los empleadores de las organizaciones de atención médica a incorporar prácticas basadas en la evidencia al planificar los horarios laborales de sus empleados, y establecer políticas, programas, prácticas y sistemas en el trabajo que promuevan la salud del sueño y una fuerza laboral alerta.
  • Instar a los empleadores a promover una cultura en el lugar de trabajo que promueva la salud del sueño para lograr un nivel óptimo de funcionamiento, salud, seguridad y sensación de bienestar de su fuerza laboral.
  • Alentar a los empleadores a que reconozcan el rol que el trabajo por turno, los turnos largos y el cansancio del personal de enfermería tienen en la rotación de empleados, el ausentismo, la seguridad de los pacientes y los costos relacionados.
  • Instar a los expertos a desarrollar cursos adicionales de educación continua para el personal de enfermería y sus supervisores, que confieran información sobre prácticas personales e intervenciones en el lugar de trabajo, basadas en la evidencia, para maximizar la salud del sueño y el estado de alerta en enfermeros y enfermeras.

Agradecimientos

Las autoras agradecen profundamente a los miembros del panel de expertos en comportamientos relacionados con la salud por su trabajo de revisión y apoyo, y a las siguientes personas que brindaron sugerencias y orientación: Matthew J. Williams, JD, MA, gerente de políticas e intermediario del personal académico con el panel de expertos en comportamientos relacionados con la salud; Shannon Zenk, PhD, MPH, RN, FAAN, presidenta, panel de expertos en comportamientos relacionados con la salud; Marjorie McCullagh, PhD, RN, APHN-BC, COHN-S, FAAOHN, FAAN, copresidenta, panel de expertos en comportamientos relacionados con la salud; Judith Payne, PhD, RN, AOCN, FAAN, presidenta anterior, panel de expertos en comportamientos relacionados con la salud; otros miembros del subgrupo de cansancio del personal de enfermería, del panel de expertos en comportamientos relacionados con la salud: Patricia A. Patrician, PhD, RN, FAAN; Catherine Todero, PhD, RN, FAAN; y Sharon M. Weinstein, MS, RN, CRNI-R, CSP, FACW, FAAN. Los hallazgos y las conclusiones que aparecen en este informe pertenecen a las autoras y no necesariamente representan la opinión de NIOSH.

Este artículo fue traducido y certificado por los Servicios Multilingües de los CDC (Centros para el Control y la Prevención de Enfermedades). NIOSH proporcionó los fondos para redactar y traducir el artículo.*

*Funding for translation into Spanish provided by National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Department of Health and Human Services, U.S.A. The translation was carried out by CDC Multilingual Services.

Este artículo se publicó en: Título de la publicación: Nursing Outlook; Volume 65 (6); Autores: Caruso CC, Baldwin CM, Berger A, Chasens ER, Landis C, Redeker NS, Scott LD, Trinkoff A; Nursing Outlook; Volume 65 (6); Título del artículo: Position statement: Reducing fatigue associated with sleep deficiency and work hours in nurses; Páginas 766-768; Derechos de autor Elsevier (2017).

Referencias

American Academy of Nursing. (2017). 2017–2020 Strategic plan. Washington, DC. Retrieved from http://www.aannet.org/about/strategic-plan-2017-20

American Nurses Association. (2016). Healthy Nurse, Healthy NationTM. Retrieved from http://www.nursingworld.org/MainMenuCategories/WorkplaceSafety/Healthy-Nurse

American Nurses Association. (2014). Addressing nurse fatigue to promote safety and health: Joint responsibilities of registered nurses and employers to reduce risks. Retrieved from http://nursingworld.org/MainMenuCategories/Policy-Advocacy/Positions-and-Resolutions/ANAPositionStatements/Position-Statements-Alphabetically/Addressing-Nurse-Fatigue-to-Promote-Safety-and-Health.html 

American Nurses Association. (2011). Mandatory overtime: Summary of state approaches. Retrieved from http://nursingworld.org/MainMenuCategories/Policy-Advocacy/State/Legislative-Agenda-Reports/MandatoryOvertime/Mandatory-Overtime-Summary-of-State-Approaches.html

Bae, S. H., & Fabry, D. (2014). Assessing the relationships between nurse work hours/overtime and nurse and patient outcomes: Systematic literature review. Nursing Outlook, 62(2), 138–156.

Baldwin, C. M. (2014). Sesión 13: Los Trastornos del sueño y la promoción del sueño saludable. Camino a la Salud (Su corazón, su vida) Manual para Promotoras y Promotores. OMS/OPS, Washington, DC. Recuperar en http://iris.paho.org/xmlui/handle/123456789/4313

Hafner, M., Stepanek, M., Taylor, J., Troxel, W. M., & Van Stolk, C. (2016). Why sleep matters The economic costs of insufficient sleep: A cross-country comparative analysis. Santa Monica, CA: RAND Corporation.

Lerman, S. E., Eskin, E., Flower, D. J., George, E. C., Gerson, B., Hartenbaum, N. & American College of Occupational and Environmental Medicine Presidential Task Force on Fatigue Risk Management. (2012). Fatigue risk management in the workplace. Journal of Occupational and Environmental Medicine, 54, 231–258.

National Safety Council. (2017). Fatigued – You’re more than just tired. Retrieved from http://www.nsc.org/learn/NSC-Initiatives/Pages/Fatigue.aspx

NIOSH. (2017). Work schedules: Shift work and long work hours. Retrieved from www.cdc.gov/niosh/topics/workschedules

NIOSH, Caruso, C. C., Geiger-Brown, J., Takahashi, M., Trinkoff, A., & Nakata, A. (2015). NIOSH training for nurses on shift work and long work hours. (DHHS [NIOSH] Publication No. 2015-115). Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.

Tefft, B. (2016). Acute sleep deprivation and risk of motor vehicle crash involvement. AAA Foundation for Traffic Safety. Retrieved from https://www.aaafoundation.org/sites/default/files/AcuteSleepDeprivationCrashRisk.pdf

U.S. Army Medicine. (2016). Performance triad. Retrieved from http://armymedicine.mil/Pages/performancetriad.aspx

Cite as: .Caruso CC, Baldwin CM, Berger A, Chasens ER, Landis C, Redeker NS, Scott LD, Trinkoff A. Declaración de posición: Reducir la fatiga asociada con la deficiencia de sueño y las horas de trabajo en enfermeras. Southwest J Pulm Crit Care. 2019;19:169-74. doi: https://doi.org/10.13175/swjpcc075-19 PDF 

Friday
May032019

Impact of Sleep and Dialysis Mode on Quality of Life in a Mexican Population

Luxana Reynaga-Ornelas, Ph.D., R.N.1

Carol M. Baldwin, Ph.D., R.N., AHN-BC, F.A.A.N.2

Kimberly Arcoleo, Ph.D., M.P.H.3

Stuart F. Quan, M.D.2,4,5

1 División de Ciencias de la Salud. Departamento de Enfermería y Obstetricia Sede León

Universidad de Guanajuato

Sede San Carlos; Blvd. Puente Milenio #1001; Fracción del Predio San Carlos; C.P. 37670; León, Gto, Mexico

2 Arizona State University, Edson College of Nursing and Health Innovation

PAHO/WHO Collaborating Centre to Advance the Policy on Research for Health

500 N. 3rd Street, Phoenix, AZ USA 85004

3 University of Rochester School of Nursing

Box SON, Helen Wood Hall

601 Elmwood Avenue, Rochester, NY USA 14642

4 Division of Sleep and Circadian Disorders Brigham and Women’s Hospital and Harvard Medical School

221 Longwood Ave. Boston, MA USA 02115

5 Asthma and Airway Disease Research Center, University of Arizona College of Medicine

1501 N. Campbell Ave., Tucson, AZ USA 85725

 

Abstract

Background: Health-related quality of life (HR-QOL) is reduced with end-stage renal disease (ESRD) but little is known about the impact of sleep disorders, dialysis modality and demographic factors on HR-QOL of Mexican patients with ESRD.

Methods: 121 adults with ESRD were enrolled from 4 dialysis units in the state of Guanajuato, Mexico, stratified by unit and dialysis modality (hemodialysis [HD], continuous ambulatory peritoneal dialysis [CAPD] and automated peritoneal dialysis [APD]). Analysis included clinical information and data from the Sleep Heart Health Study Sleep Habits Questionnaire, the Medical Outcomes Study (MOS) short form (SF-36) HR-QOL measure and Epworth Sleepiness Scale.

Results: Overall, sleep symptoms and disorders were common (e.g., 37.2% insomnia). SF-36 scores were worse versus US and Mexican norms. HD patients reported better, while CAPD patients poorer HR-QOL for Vitality. With multivariate modelling dialysis modality, sleep disorders as a group and lower income were significantly associated with poorer overall SF-36 and mental health HR-QOL. Overall and Mental Composite Summary models showed HR-QOL was significantly better for both APD and HD with small to moderate effect sizes. Cost-effectiveness analysis demonstrated an advantage for APD.

Conclusions: Mexican ESRD patients have reduced HR-QOL, and sleep disorders may be an important driver of this finding. APD should be the preferred mode of dialysis in Mexico.

Introduction 

The prevalence of end stage renal disease is increasing worldwide with an estimated prevalence in 2010 of 4.9 million persons. Unfortunately, only half receive dialysis; this need is projected to more than double by 2030 (1). End stage renal disease (ESRD) is associated with cardiovascular morbidity and mortality, type 2 diabetes, cognitive decline, and bone and mineral disorders. In Mexico, it is a significant health problem with annual prevalence and incidence rates of 1,564 and 412 per million persons respectively with over 65,000 individuals receiving dialysis (2). In addition, between 2000 and 2013, the incidence rate of ESRD has increased 122% (2). It has an annual mortality rate of 12.3 deaths per 100,000 inhabitants and is the second leading cause of years lost due to premature death (2). The most common treatment for ESRD in Mexico is hemodialysis (HD) performed at dialysis centers in over 50% of patients. The remainder receive peritoneal dialysis (PD) at home of which 70% are on continuous ambulatory peritoneal dialysis (CAPD) and 30% are on automated peritoneal dialysis (APD) (2). With CAPD, dialysis fluid is infused manually into the peritoneal cavity and then drained over a few hours usually four times per day. With APD, the process is automated with a device with alarms and safety features and is done at night. Kidney transplantation remains uncommon.

Treatment for ESRD has significant physiological, psychological and socio-economic implications for the individual, family, and community. Not surprisingly, persons with ESRD report poorer health-related quality of life (HR-QOL) compared with the general population (3, 4). Several studies have examined dialysis modality type on HR-QOL. Better HR-QOL scores have been noted for PD compared with HD treatment for ESRD (5, 6), but not always (7-9). A meta-analysis found better utility-based quality of life for APD compared to CAPD (10) and a recent study found APD associated with better physical health and milder dialysis-related symptoms than CAPD (11). Most of the studies used in the meta-analysis were from North America, Europe or Asia. There is little data available comparing HR-QOL among dialysis modalities for persons with ESRD in Latin American countries including Mexico.

Sleep disorders in persons with ESRD are common with prevalence estimates between 50 to more than 80%, and negatively influence HR-QOL (12-14). Among patients with ESRD, they include nightmares, excessive daytime sleepiness (EDS), restless leg syndrome (RLS), sleep apnea syndrome (OSA), insomnia and poor sleep quality (13). Whether the prevalence and severity of sleep disorders are similar among dialysis modalities is unclear; previous studies have been discordant with equivalent (15-17) and dissimilar rates and severity both reported (18-20). Only one study performed comparisons among HD, APD and CAPD (20). It found similar rates of insomnia, but less OSA with HD and more RLS with APD.

The purpose of this study was to determine the associations among HR-QOL and sleep disorders as a function of dialysis modality in a Mexican population with ESRD. A differential association may be an important factor in choice of dialysis modalities. We hypothesized that in this population, sleep disorders would be an important determinant of HR-QOL in ESRD, that APD would be associated with better QOL and be more cost-effective than HD or CAPD.

Methods

Design. Participants were a convenience sample of 125 patients with ESRD selected among persons insured by the Insurance and Social Service Institute for State Workers (ISSSTE) who were living in the state of Guanajuato, Mexico. Participants were proportionately selected by clusters. The sample included 30 patients from each geographic location of dialysis treatment units in the cities of Celaya, Irapuato, Guanajuato and Leon; ten patients were selected per dialysis modality (CAPD, APD, and HD). Patients were included if they were 18 years of age or older, Spanish-speaking, receiving dialysis and had not been hospitalized for the immediate 3 months prior to recruitment. Patients with cognitive or other mental health deficits that would preclude them from completing survey questionnaires were excluded from the study. They were recruited for participation during their monthly meetings, or in the waiting room for their specialist appointment. At the time of initial contact or a later appointment, the patient was asked to provide written informed consent, and to complete an individual interview and surveys that included information about their health, sleep and HR-QOL. They were also asked to give consent for chart review. The study was approved by the University of Guanajuato Ethics Committee and the Arizona State University Institutional Review Board.

Data Collection. Trained interviewers obtained information regarding age, sex, marital status, socioeconomic status (SES), educational level, number of hospitalizations, and time since first treatment. Participants also completed the Spanish translated and validated Sleep Heart Health Study Sleep Habits Questionnaire, and the Spanish version of the 36-item Medical Outcomes Study (MOS) short form (SF-36) HR-QOL measure. Height and weight were obtained to determine body mass index (BMI). Recent glucose, albumin, creatinine, urea, and hematocrit/hemoglobin blood levels were extracted from the patient’s medical record within the past three months. Additional clinical data collected to calculate the financial cost were ESRD etiology, hospitalizations within the past year, type of catheter, dialysis dose, number of anti-hypertensive drugs, use of erythropoietin, number of HD sessions per week and last home visit by the dialysis team.

Measurement Tools

Sleep Heart Health Sleep Study (SHHS), Sleep Habits Questionnaire (SHQ). The SHQ instrument has typically been used with patients with unidentified sleep disorders. The questionnaire addresses nine aspects of sleep disorders: 1) Snoring; 2) Breathing pauses (apnea); 3) Witnessed apneas; 4) Daytime sleepiness; 5) Insufficient sleep; 6) Insomnia symptoms including unrefreshing or nonrestorative sleep; 7) Nightmares, 8) Restless legs syndrome; and 9) Self-reported weekday and weekend sleep duration. Sleep symptoms questions were rated on a 5-point Likert-type scale from ‘Never’ to Almost Always.’ The SHQ, developed for the SHHS, has been used in a variety of investigations and is accepted as an appropriate means of characterizing sleep health. The Spanish version of the SHQ was cross-language validated by Baldwin and colleagues and shows excellent agreement with the English version (21).

Epworth Sleepiness Scale. The Epworth Sleepiness Scale (ESS) is a validated self-completion tool that asks subjects to rate the likelihood of falling asleep in eight common situations using four ordinal categories ranging from 0 (no chance) to 3 (high chance) (22). Scores range from 0 to 24 with a score >10 suggesting EDS (22). The Spanish version of the ESS was incorporated into the SHQ and has demonstrated equivalent reliability and validity as the English version (23).

Medical Outcomes Survey (MOS) Short Form SF-36 (Spanish version). The MOS SF-36 is a widely-used measure of health status and HR-QOL (24). It measures variations in health care practices and outcomes in a self-administered survey that assesses eight health dimensions. Scores for each subscale range from 0–100, with higher scores representing better QOL (24). Subscales measure the following eight general health concepts: physical functioning (PF), role physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), mental health (MH) and role emotional (RE). The Spanish version was validated in a Mexican population (25).

SF-6 D scores. The short-form-6D is a preference-based health state classification developed from the SF-36. All participants who complete the SF-36 can be assigned an SF-6D score (26). The SF-6D is a continuous measure, scored on a 0.29-1.0 scale, with 1.00 indicating optimal health. It has been used in economic evaluations of interventions for ESRD (27).

Data Analysis

Continuous variables are reported as means and standard deviations and categorical variables by percentages. A chi-square test was used to assess the association of demographic characteristics with dialysis modality. Comparisons between HR-QOL scores and the treatment groups were performed by analysis of variance (ANOVA). Effect sizes were estimated using Cohen’s d. Multiple linear regression analysis was performed controlling for socio-demographic factors, income (SES) and sleep disorders. SAS (V9.1) and IBM SPSS (V25) were used for data analysis. P <0.05 was considered statistically significant unless otherwise stated.

A cost effectiveness analysis utilizing the quality-adjusted life year (QALY) method examined the cost-effectiveness of each dialysis modality group. Cost data was obtained from data available online from Mexican governmental sources. The QALY was computed as the number of years on dialysis/hemodialysis x SF-6D score. A ratio of the difference in cost to the difference in effectiveness (QALY) was computed for each of the three therapies which yielded the incremental cost-effectiveness ratio (ICER).

Results

Of 125 patients approached for recruitment, 121 fulfilled the inclusion criteria, and all agreed to voluntarily participate and provide written informed consent. Socio-demographic and clinical characteristics of the consenting patients are shown in Table 1.

Table 1. Socio-demographic and Clinical Characteristics of Study Participants by Dialysis Modality.

Note: ‡p<0.01; *p < 0.05; †p<0.10. APD (Automated Peritoneal Dialysis); CAPD (Continuous Ambulatory Peritoneal Dialysis); HD (Hemodialysis).

There was a slightly greater percentage of males (55.4%) and 39.7% were 65 years of age or older. Clinical characteristics were not available on all patients. However, patients dialyzed with APD were younger, more highly educated, had higher incomes, consumed less alcohol and were more likely to be working. There was a trend for APD patients to have a higher creatinine. Otherwise, there were no differences among the 3 groups.

The prevalence of self-reported sleep disorders or symptoms overall, as well as stratified by dialysis modality are presented in Table 2.

Table 2. Prevalence of Self-reported Sleep Disorders and Symptoms by Dialysis Type

Note: *p < 0.05, †p <0.10. EDS (Excessive Daytime Sleepiness); APD (Automated Peritoneal Dialysis); CAPD (Continuous Ambulatory Peritoneal Dialysis); HD (Hemodialysis).

Notably, all patients reported at least one sleep symptom in the past year (data not shown). Insomnia was the most frequently reported disorder and was particularly prevalent for patients receiving HD although not statistically significant. There also was a trend for HD (42.5%) and CAPD (41.0%) patients to report higher rates of non-restorative (unrefreshing) sleep compared to APD patients (19%). In contrast, APD patients reported higher rates of witnessed apnea and snoring (14.3% and 25.6%, respectively) compared to CAPD (10.3%, 19.4%) and HD (5.1%, 17.5%) patients. Patients receiving APD were less likely to report EDS (11.9%) on the ESS but this was not statistically significant compared to CAPD (25.6%) and HD (25.0%). The prevalence of sleep disorders was the same for those younger than 65 years of age in comparison to those older than 65 years (data not shown) except for problems with waking up too early and not being able to fall back asleep (younger: 32.9% vs. older 51.2%, p=0.05)

Table 3 presents the comparison of the eight SF-36 domains and the Physical and Mental Component Summary (PCS and MCS) scores for the three dialysis modality groups with effect sizes for pairwise comparisons.

Table 3. Mean Scores and Standard Deviations for SF-36 Domains, Physical and Mental Composite Scores and SF-6D Scores by Dialysis Modality

Note: ‡p<0.01; *p < 0.05; †p <0.10. PCS (Physical Composite Score); MCS (Mental Composite Score); SD (Standard Deviation); APD (Automated Peritoneal Dialysis); CAPD (Continuous Ambulatory Peritoneal Dialysis); HD (Hemodialysis). Cohen’s d effect sizes were calculated examining the differences between dialysis type groups (small effect size ~0.2, medium effect size ~0.5, large effect size ~0.8).

The patients on HD reported significantly better HR-QOL for Vitality and a trend towards higher Social Functioning compared to persons on CAPD and APD; the patients on CAPD experienced the poorest quality of life on these two scales. There was a trend for patients on APD and HD to indicate better Physical Functioning and Role Physical HR-QOL compared to the CAPD patients. There was a tendency for better mental health on the MCS for patients receiving HD and APD compared to patients on CAPD. Importantly, effect sizes for the various domains and subdomains showed that they were generally small to moderate for contrasts between CAPD and either APD or HD. However, they were trivial to small between APD and HD. No other notable differences were observed among groups on the SF-36.

Determinants of HR-QOL was further investigated using multivariate modelling with socio-demographic factors, co-morbidities and self-reported sleep disorders and symptoms as potential explanatory variables. Dialysis modality (CAPD associated with worse HR-QOL in comparison to HD and APD, F=4.87, p<.02), sleep disorders and symptoms as a group (i.e., any of symptoms consistent with obstructive sleep apnea, insomnia, insufficient sleep and restless legs syndrome, F=17.79, p<.0001) and lower income (F=4.48, p<.04) were significantly associated with worse HR-QOL on the Mental Composite Summary of the SF-36, accounting for 34% of the variance (F=4.02, p=.0004). In contrast, the model for the Physical Composite Summary was not statistically significant. HR-QOL was significantly better for both APD (Least Square Mean=52.0 + 2.3) and HD (51.4 + 2.6) in comparison to CAPD (43.0 + 2.5, p<.025 vs. APD/HD) in the Mental Composite Summary, but not the Physical Composite Summary models (Least Square Means: CAPD: 31.4 + 2.5, APD: 33.7 + 2.3, HD: 34.8 + 2.5; p>.05 for all comparisons).

Cost effectiveness analyses for each dialysis modality are in Table 4.

Table 4. Dialysis Modalities Cost Analysis

Note: APD (Automated Peritoneal Dialysis); CAPD (Continuous Ambulatory Peritoneal Dialysis); HD (Hemodialysis). QALY (quality-adjusted life year), ICER (Incremental Cost-Effectiveness Ratio); IE (Incremental effectiveness); IC (Incremental Cost).

Although CAPD was the least costly, it was the least effective (QALY=0.71); APD was less costly than HD, but was more effective (APD QALY: 2.05 vs. HD QALY 1.44) and HD was the most costly with moderate effectiveness. Comparing the incremental cost effectiveness ratios among APD, CAPD and HD, APD was superior to both CAPD and HD, and HD was better than CAPD.

Discussion

In this study, we found that there is a high prevalence of sleep disorders and symptoms among Mexican patients with ESRD with differences in prevalence among dialysis modalities. Like other chronic medical conditions, HR-QOL, particularly mental health aspects, was poor in these patients and notably, the presence of sleep disorders was an important determinant of poorer HR-QOL.

Consistent with previous reports (12, 13, 28), we observed that sleep disorders and symptoms of sleep disorders were common among Mexican patients on dialysis. The explanation for the high rate of sleep disorders and symptoms in ESRD is likely multifactorial including metabolic issues, medications, poor sleep hygiene and dysfunction in ventilatory control (13). In addition, we found that there were differences in prevalence rates for some sleep disorders and symptoms among dialysis modalities. Previous investigations comparing the prevalence of sleep disorders among dialysis modalities have not been consistent. Some studies comparing only APD to CAPD have found no differences (15-17). In others, sleep problems as a generic symptom tended to be more common among APD compared to CAPD (18), and more frequent among HD in comparison with PD (19). To our knowledge, there is one other study that compared the rates of sleep disorders and symptoms among all 3 dialysis modalities (20). In that study, the rates of insomnia were high (>80%), but not different among dialysis modalities. Obstructive sleep apnea was the least common in HD patients (36% vs 60% [APD] and 65% [CAPD]). Furthermore, they observed less RLS in HD patients (23%) in comparison to APD (50%) and CAPD (33%). In contrast, we observed that unrefreshing sleep, a symptom of insomnia, was more common in HD and CAPD, snoring and witnessed apneas to be more frequent in APD, and no differences in the prevalence rates of RLS. The explanation for the large amount of discrepancy among various studies is unclear. However, possibilities include differences in the socio-demographic characteristics of the study populations and the questions used to elicit information. Further studies are required, particularly ones that use overnight polysomnography and standardized questionnaires.

We found there were few differences in the prevalence of sleep disorders or their symptoms between older and younger patients with ESRD. The only exception was early morning awakenings which are a common complaint among the elderly and may reflect a phase advance in sleep timing (29). Otherwise, in contrast to our findings, older persons in general population cohorts report more problems with their sleep (30, 31). We propose that the negative impact of ESRD on sleep quality had greater impact on younger patients thus negating any age differences in prevalence rates.

Despite the availability of dialysis to treat ESRD, HRQOL remains low compared to the general population (3, 4). Our findings in a cohort of Mexican patients with ESRD being treated with 3 different dialysis modalities is no different and are generally consistent with data from a large study of US patients with ESRD (32). Compared to the previous study in Mexican patients with ESRD, all of whom were receiving HD (28), however, we found lower scores on the Physical Function and higher scores on the Role Emotional scales. One-third of the current study was comprised of patients on CAPD, and thus our finding of worse Physical Function can be attributed to lower scores among this subgroup. The discrepancy in the Role Emotional scale, however, remains unexplained. International comparisons of HRQOL in patients with ESRD exhibit considerable heterogeneity (32). This may be related to cultural diversity, social determinants of health, health inequality or differences in health delivery systems across countries. In Mexico, availability and adequacy of dialysis varies considerably according to the insurance status of the patient (2). Irrespective of potential cross-cultural and international differences, it is important for clinicians and health care workers to realize that HR-QOL is reduced in ESRD and comparable to other chronic medical conditions despite the use of dialysis. Our findings support the recommendation by Jha et al. that national programs for chronic diseases include strategies to reduce burden and costs relevant to kidney disease (33).

Importantly, we found that in multivariate analyses, the presence of sleep disorders was a major factor in adversely affecting HR-QOL with the primary impact on the mental health component of HR-QOL. Other studies also have found negative associations between various sleep disorders and HR-QOL in patients with ESRD (12, 14). Our findings, however, extend these previous observations to a Latin American population. They further highlight the importance of sleep as a determinant of HR-QOL in ESRD and suggest that screening for poor sleep and sleep disorders should be an essential part of the care of patients undergoing chronic dialysis. As well, sleep health promotion strategies should be developed and implemented relevant to this patient population and examined germane to improving HR-QOL, further reducing health care cost, sequelae from ESRD, and dialysis type.

In addition to sleep disorders, we observed that mode of dialysis was an important determinant of HR-QOL. Several extant studies also have examined dialysis modality type on HR-QOL and most report better HR-QOL for PD compared to HD treatment for ESRD (5, 6). One study in elderly patients, however, observed no difference between PD and HD (7). It is suggested that travel and dietary restrictions are fewer, and recreation opportunities and dialysis access are improved with PD resulting in better HR-QOL (34). In addition, indices of depression may be higher in comparisons of HD to PD (5). Comparisons of APD to CAPD are fewer (3, 16, 18, 35), with most showing that APD is associated with better HR-QOL (3, 18, 35). Our study extends these previous studies by being one of the few to examine quality of life among all three dialysis modalities simultaneously (36). Our results suggest that in comparison to HD and APD, CAPD is associated with worse HR-QOL with small to moderate effect sizes; there was little difference between HD and APD with trivial to small effect sizes. The burdensome requirement for continuous dialysate exchanges in CAPD compared to only nightly automated exchanges with APD or scheduled visits to a dialysis center for HD likely explains this finding. Furthermore, our cost-effectiveness analysis indicates that for the socio-economic landscape in Mexico, APD should be the preferred dialysis modality.

Our study has some important limitations. First, the study population was not prospectively selected or randomized with respect to dialysis modality. Unfortunately, choice of dialysis modality in Mexico and elsewhere is dictated frequently by health insurance, patient income and availability of resources. Thus, it is possible that our findings related to HR-QOL and sleep disorders may have been impacted by an assignment bias. For example, CAPD may have been differentially provided to patients with lower income, thus accounting for worse HR-QOL. We attempted to mitigated this by controlling for some of these potential biases with our multivariate analysis. Nevertheless, residual confounding may have been present. Second, our analyses are cross-sectional and causality cannot be confirmed. Third, the presence of sleep disorders and symptoms was self-reported; there may have been some misclassification. Any misclassifications, however, were likely non-differential. Last, our study sample is relatively small; some non-statistically significant differences may represent type II error. Conversely, use of multiple comparisons may have resulted in type I error in some cases.

In summary, HR-QOL is reduced in Mexican patients with ESRD and the presence of sleep disorders may be an important driver of this finding. Interventions targeted at improving sleep quality and treating sleep disorders may improve HR-QOL in this population. Differences in HR-QOL among dialysis modalities suggest that in Mexico, APD should be the preferred mode of dialysis.

Acknowledgements

Financial support was provided to Dr. Reynaga-Ornelas by the Bardewick Scholarship from Arizona State University and the PROMEP Scholarship from the University of Guanajuato. Dr. Quan was partially supported by AG009975 from the National Institute of Aging.

References

  1. Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975-82. [CrossRef] [PubMed]
  2. García-García G, García-Bejarano H, Breien-Coronado H, et al. Chapter 9 - End-Stage Renal Disease in Mexico. In: Chronic Kidney Disease in Disadvantaged Populations. García-García G, Agodoa LY and Norris K, eds. Cambridge, MA: Academic Press, 2017; 77-83. [CrossRef] [PubMed]
  3. Reina Neyra M, Cirera Segura F, Martín Espejo J. Salud Percibida por los Pacientes en DPCA y DPA. Rev Soc Esp Enferm Nefrol. 2008;11(2):26-33. [CrossRef]
  4. Guerini Rocco D, Mercieri A, Yavuzer G. Multidimensional health-status assessment of chronic hemodialysis patients: the impact on quality of life. Eura Medicophys. 2006;42(2):113-9. [PubMed]
  5. Ginieri-Coccossis M, Theofilou P, Synodinou C, Tomaras V, Soldatos C. Quality of life, mental health and health beliefs in haemodialysis and peritoneal dialysis patients: investigating differences in early and later years of current treatment. BMC Nephrol. 2008;914-2369-9-14. [CrossRef] [PubMed]
  6. Chen JY, Wan EYF, Choi EPH, et al. The health-related quality of life of chinese patients on hemodialysis and peritoneal dialysis. Patient. 2017;10(6):799-808. [CrossRef] [PubMed]
  7. Harris SA, Lamping DL, Brown EA, Constantinovici N, North Thames Dialysis Study (NTDS) Group. Clinical outcomes and quality of life in elderly patients on peritoneal dialysis versus hemodialysis. Perit Dial Int. 2002;22(4):463-70. [PubMed]
  8. Queeley GL, Campbell ES. Comparing treatment modalities for end-stage renal disease: A meta-analysis. Am Health Drug Benefits. 2018;11(3):118-27. [PubMed]
  9. Manavalan M, Majumdar A, Harichandra Kumar KT, Priyamvada PS. Assessment of health-related quality of life and its determinants in patients with chronic kidney disease. Indian J Nephrol. 2017;27(1):37-43. [CrossRef] [PubMed]
  10. Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9(9):e1001307. [CrossRef] [PubMed]
  11. Yang F, Luo N, Lau T, Yu ZL, Foo MWY, Griva K. Health-related quality of life in patients treated with continuous ambulatory peritoneal dialysis and automated peritoneal dialysis in Singapore. Pharmacoecon Open. 2018;2(2):203-8. [CrossRef] [PubMed]
  12. Brekke FB, Amro A, Hortemo Osthus TB, Dammen T, Waldum B, Os I. Sleep complaints, depression and quality of life in Norwegian dialysis patients. Clin Nephrol. 2013;80(2):88-97. [CrossRef] [PubMed]
  13. Hanly P. Sleep disorders and end-stage renal disease. Curr Opin Pulm Med. 2008;14(6):543-50. [CrossRef] [PubMed]
  14. Edalat-Nejad M, Qlich-Khani M. Quality of life and sleep in hemodialysis patients. Saudi J Kidney Dis Transpl. 2013;24(3):514-8. [CrossRef] [PubMed]
  15. Turkmen K, Yazici R, Solak Y, et al. Health-related quality of life, sleep quality, and depression in peritoneal dialysis and hemodialysis patients. Hemodial Int. 2012;16(2):198-206. [CrossRef] [PubMed]
  16. Guney I, Solak Y, Atalay H, et al. Comparison of effects of automated peritoneal dialysis and continuous ambulatory peritoneal dialysis on health-related quality of life, sleep quality, and depression. Hemodial Int. 2010;14(4):515-22. [CrossRef] [PubMed]
  17. Eryavuz N, Yuksel S, Acarturk G, et al. Comparison of sleep quality between hemodialysis and peritoneal dialysis patients. Int Urol Nephrol. 2008;40(3):785-91. [CrossRef] [PubMed]
  18. Bro S, Bjorner JB, Tofte-Jensen P, et al. A prospective, randomized multicenter study comparing APD and CAPD treatment. Perit Dial Int. 1999;19(6):526-33. [PubMed]
  19. Eghbali M, Shahqolian N, Nazari F, Babaee S. Comparing problems of patients with chronic renal failure undergoing hemodialysis and peritoneal dialysis referring to medical university's hospitals. Iran J Nurs Midwifery Res. 2009;14(1):1-5.
  20. Losso RL, Minhoto GR, Riella MC. Sleep disorders in patients with end-stage renal disease undergoing dialysis: comparison between hemodialysis, continuous ambulatory peritoneal dialysis and automated peritoneal dialysis. Int Urol Nephrol. 2015;47(2):369-75. [CrossRef] [PubMed]
  21. Baldwin CM, Choi M, McClain DB, Celaya A, Quan SF. Spanish translation and cross-language validation of a sleep habits questionnaire for use in clinical and research settings. J Clin Sleep Med. 2012;8(2):137-46. [CrossRef] [PubMed]
  22. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540-5. [CrossRef] [PubMed]
  23. Ferrer M, Vilagut G, Monasterio C, Montserrat JM, Mayos M, Alonso J. Measurement of the perceived impact of sleep problems: the Spanish version of the functional outcomes sleep questionnaire and the Epworth sleepiness scale. Med Clin (Barc). 1999;113(7):250-5. [PubMed]
  24. Ware JE,Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473-83. [CrossRef] [PubMed]
  25. Zúniga AM, Carrillo-Jiménez TG, Fos JP, Gandek B, Medina-Moreno M. Evaluación del estado de salud con la Encuesta SF-36: resultados preliminares en México. Salud Pública de México. 1999;41(2):110-8. [CrossRef] [PubMed]
  26. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. J Health Econ. 2002;21(2):271-92. [CrossRef]
  27. Davison SN, Jhangri GS, Feeny DH. Comparing the health utilities index mark 3 (HUI3) with the short form-36 preference-based SF-6D in chronic kidney disease. Value Health. 2009;12(2):340-5. [CrossRef] [PubMed]
  28. Dehesa-Lopez E, Correa-Rotter R, Olvera-Castillo D, Gonzalez-Parra C, Baizabal-Olarte R. Clinical, dialytic, and laboratory factors associated with poor health-related quality of life in Mexican patients on hemodialysis. Rev Invest Clin. 2016;68(4):192-200. [PubMed]
  29. Kim JH, Duffy JF. Circadian rhythm sleep-wake disorders in older adults. Sleep Med Clin. 2018;13(1):39-50. [CrossRef] [PubMed]
  30. Klink M, Quan SF. Prevalence of reported sleep disturbances in a general adult population and their relationship to obstructive airways diseases. Chest. 1987;91(4):540-6. [CrossRef] [PubMed]
  31. Ohayon MM, Zulley J, Guilleminault C, Smirne S, Priest RG. How age and daytime activities are related to insomnia in the general population: consequences for older people. J Am Geriatr Soc. 2001;49(4):360-6. [CrossRef] [PubMed]
  32. Fukuhara S, Lopes AA, Bragg-Gresham JL, et al. Health-related quality of life among dialysis patients on three continents: the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2003;64(5):1903-10. [CrossRef] [PubMed]
  33. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260-72. [CrossRef] [PubMed]
  34. Wu AW, Fink NE, Marsh-Manzi JV, et al. Changes in quality of life during hemodialysis and peritoneal dialysis treatment: generic and disease specific measures. J Am Soc Nephrol. 2004;15(3):743-53. [CrossRef] [PubMed]
  35. de Wit GA, Merkus MP, Krediet RT, de Charro FT. A comparison of quality of life of patients on automated and continuous ambulatory peritoneal dialysis. Perit Dial Int . 2001;21(3):306-12. [PubMed]
  36. Caballero-Morales S, Trujillo-Garcia JU, Welsh-Orozco U, Hernandez-Cruz ST, Martinez-Torres J. Calidad de vida en pacientes con hemodiálisis, diálisis peritoneal continua ambulatoria y automatizada. Arch Med Fam. 2006;8(3):163-8.

Cite as: Reynaga-Ornelas L, Baldwin CM, Arcoleo K, Quan SF. Impact of sleep and dialysis mode on quality of life in a Mexican population. Southwest J Pulm Crit Care. 2019;18(5):122-34. doi: https://doi.org/10.13175/swjpcc017-19 PDF