Last 50 Pulmonary Postings

(Click on title to be directed to posting, most recent listed first, CME offerings in Bold)

April 2017 Pulmonary Case of the Month
March 2017 Pulmonary Case of the Month
February 2017 Pulmonary Case of the Month
January 2017 Pulmonary Case of the Month
December 2016 Pulmonary Case of the Month
Inhaler Device Preferences in Older Adults with Chronic Lung Disease
November 2016 Pulmonary Case of the Month
Tobacco Company Campaign Contributions and Congressional Support
   of the Cigar Bill
October 2016 Pulmonary Case of the Month
September 2016 Pulmonary Case of the Month
August 2016 Pulmonary Case of the Month
July 2016 Pulmonary Case of the Month
June 2016 Pulmonary Case of the Month
May 2016 Pulmonary Case of the Month
April 2016 Pulmonary Case of the Month
Pulmonary Embolism and Pulmonary Hypertension in the Setting of
   Negative Computed Tomography
March 2016 Pulmonary Case of the Month
February 2016 Pulmonary Case of the Month
January 2016 Pulmonary Case of the Month
Interval Development of Multiple Sub-Segmental Pulmonary Embolism in
Mycoplasma Pneumoniae Bronchiolitis and Pneumonia
December 2015 Pulmonary Case of the Month
November 2015 Pulmonary Case of the Month
Why Chronic Constipation May be Harmful to Your Lungs
Traumatic Hemoptysis Complicating Pulmonary Amyloidosis
Staphylococcus aureus Sternal Osteomyelitis: a Rare Cause of Chest Pain
Safety and Complications of Bronchoscopy in an Adult Intensive Care Unit
October 2015 Pulmonary Case of the Month: I've Heard of Katy
Pulmonary Hantavirus Syndrome: Case Report and Brief Review
September 2015 Pulmonary Case of the Month: Holy Smoke
August 2015 Pulmonary Case of the Month: Holy Sheep
Reducing Readmissions after a COPD Exacerbation: A Brief Review
July 2015 Pulmonary Case of the Month: A Crazy Case
June 2015 Pulmonary Case of the Month: Collapse of the Left Upper
Lung Herniation: An Unusual Cause of Chest Pain
Valley Fever (Coccidioidomycosis): Tutorial for Primary Care Professionals
Common Mistakes in Managing Pulmonary Coccidioidomycosis
May 2015 Pulmonary Case of the Month: Pneumonia with a Rash
April 2015 Pulmonary Case of the Month: Get Down
March 2015 Pulmonary Case of the Month: Sticks and Stones May
   Break My Bronchi
Systemic Lupus Erythematosus Presenting As Cryptogenic Organizing 
   Pneumonia: Case Report
February 2015 Pulmonary Case of the Month: Severe Asthma
January 2015 Pulmonary Case of the Month: More Red Wine, Every
December 2014 Pulmonary Case of the Month: Bronchiolitis in Adults
November 2014 Pulmonary Case of the Month: BAL Eosinophilia
How Does Genetics Influence Valley Fever? Research Underway Now To
   Answer This Question
October 2014 Pulmonary Case of the Month: A Big Clot
September 2014 Pulmonary Case of the Month: A Case for Biblical


For complete pulmonary listings click here.

The Southwest Journal of Pulmonary and Critical Care publishes articles broadly related to pulmonary medicine including thoracic surgery, transplantation, airways disease, pediatric pulmonology, anesthesiolgy, pharmacology, nursing  and more. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.



Pulmonary Embolism and Pulmonary Hypertension in the Setting of Negative Computed Tomography

Peter V. Bui, MD

Sapna Bhatia, MD

Dona J. Upson, MD, MA


Department of Internal Medicine

Division of Pulmonary, Critical Care, and Sleep Medicine

The University of New Mexico and Raymond G. Murphy VA Medical Center

Albuquerque, NM



Introduction: Chronic pulmonary hypertension (PH) can display acute elevations in pulmonary arterial pressure (PAP) in the setting of hypoxemia, pulmonary embolism (PE), and possibly sepsis.

Case Description: A 68-year-old man with chronic obstructive pulmonary disease, heart failure, recent tobacco cessation, and recent 2-vessel coronary artery bypass grafting (CABG) presented with one to two weeks of respiratory symptoms and syncope on the day of admission. He was found to have a urinary tract infection and Escherichia coli bacteremia. Transthoracic echocardiography found a systolic PAP of 100-105 mmHg, increased from a mean PAP of 32 mmHg before CABG. PE was not seen on computed tomography angiography (CTA). Ventilation-perfusion scan two days later found evidence of subsegmental PE. PAP prior to discharge was 30-35 mmHg plus right atrial pressure.

Conclusion: PAP can rise substantially in the acute or subacute setting, particularly when multiple disease processes are involved, and decrease to (near) baseline with proper therapy. Chronic PH may even be protective. In a complex clinical setting with multiple possible etiologies for elevated PAP, clinicians should have a high suspicion for PE despite a negative CTA.

Abbreviation List

ADHF acute decompensated heart failure

CABG coronary artery bypass grafting

COPD chronic obstructive pulmonary disease

CTA computed tomography angiography

CXR conventional chest radiograph
EF ejection fraction

HCAP healthcare-associated pneumonia

HFpEF heart failure with preserved ejection fraction

INR international normalized ratio

LV left ventricle

PAP pulmonary arterial pressure

PCWP pulmonary capillary wedge pressure

PE pulmonary embolism

PH pulmonary hypertension

RA right atrium/atrial

RV right ventricle/ventricular

RHC right heart catheterization

SaO2 arterial oxygen saturation

TTE transthoracic echocardiography

UTI urinary tract infection

VTE venous thromboembolism

VQ ventilation-perfusion


Pulmonary hypertension (PH) is classified into five groups (1). In the United States, the incidence and prevalence of PH and each of its five groups are largely unclear. Group 2, due to left heart disease, has a prevalence as high as 83% by transthoracic echocardiography (TTE) in patients with heart failure with preserved ejection fraction (HFpEF) (2). For group 3, due to chronic lung disease, in a study measuring pulmonary arterial pressure (PAP) by right heart catheterization (RHC), the prevalence of PH among patients with chronic obstructive pulmonary disease (COPD) was 36% (3). Changes in PAP in the setting of acute or subacute pulmonary embolism (PE) are unknown. We present a patient found to have transient severely elevated PAP in the setting of a negative computed tomography angiography (CTA) and positive ventilation-perfusion (VQ) scan with distractors including HFpEF, COPD, and sepsis.

Case Presentation

A 68-year-old man with severe COPD on four liters per minute of supplemental oxygen, a 50-pack-year smoking history with cessation two months before admission, HFpEF, 3-vessel coronary artery disease, myocardial infarction involving the left circumflex artery, recent 2-vessel coronary artery bypass grafting (CABG), recurrent urinary tract infections (UTIs), chronic prostatitis, and prostatic calculi presented after a syncopal episode. One day prior to admission, he experienced fevers to 40°C and shaking chills. On the day of admission, the patient woke up struggling for breath and experienced syncope while getting out of bed. He had been having altered mental status and one week of productive cough with greenish sputum. He did not have any other respiratory, urinary, and constitutional symptoms. He presented to an outside hospital, where he was treated for presumed sepsis secondary to a UTI and started on an antibiotic. He was transferred to our facility and admitted for a UTI and possible healthcare-associated pneumonia (HCAP).

At presentation at our facility, vital signs included a temperature of 36.8°C, heart rate of 87 beats per minute, blood pressure of 124 mmHg / 69 mmHg, respiratory rate of 18 breaths per minute, and oxygen saturation of 96% on three-to-four liters per minute of supplemental oxygen. The physical examination was notable for expiratory wheezing and trace lower extremity edema. White blood cell was 13.5 K/mm3, neutrophilia of 80.4%, troponin I of 0.048 ng/mL, N-terminal pro-brain natriuretic peptide of 2800 pg/mL, and urinalysis suggestive of UTI. An arterial blood gas was deemed unnecessary for unchanged supplemental oxygen, normal mentation, and lack of respiratory distress. Electrocardiography showed normal sinus rhythm, nonspecific ST and T wave abnormalities, and previously identified signs of inferior-posterior infarction without evidence of acute right heart strain. He did not receive chemoprophylaxis for venous thromboembolism (VTE) because of possible surgical intervention.

Ten days before admission (Table 1), he made a long distance drive to see Cardiothoracic Surgery for post-CABG follow-up.

Table 1. Timeline of events surrounding the patient’s hospitalization. Computed tomography angiography (CTA). Coronary artery bypass grafting (CABG). Conventional chest radiographs (CXR). Ejection fraction (EF). International normalized ratio (INR). Pulmonary arterial pressure (PAP). Pulmonary embolism (PE). Transthoracic echocardiography (TTE). Urinary tract infection (UTI). Ventilation-perfusion (VQ).


He had an increased oxygen requirement from three-to-four to four-to-five liters per minute, bilateral lower extremity edema, and supratherapeutic international normalized ratio (INR) of 4.4 on warfarin for postoperative atrial fibrillation, that had since resolved. TTE showed a normal sized left ventricle (LV), LV ejection fraction of 50-55%, inferolateral wall akinesis, basal inferior wall akinesis, mildly dilated right ventricle (RV), mildly reduced RV systolic function, mildly dilated right atrium (RA), PAP of 70-80 mmHg, and right atrial pressure of 10-15 mmHg. The patient refused hospitalization. Furosemide and metolazone were increased, and warfarin discontinued. His INR was 1.4 four days before admission.

Outpatient medications included amiodarone, simvastatin 10 mg, aspirin 81 mg, metoprolol 25 mg three times a day, and furosemide 80-100 mg daily. Six weeks prior to admission, RHC found RA pressure of 12 mmHg, RV pressure of 45/15 mmHg, PAP of 45/25 mmHg with a mean pressure of 32 mmHg, pulmonary capillary wedge pressure (PCWP) of 15 mmHg, cardiac output of 7.98 L/min, cardiac index of 3.55 L/min/m2, SaO2 97%, mixed venous saturation of 71%, pulmonary vascular resistance of 2.1 dynes-sec-cm-5, and system vascular resistance of 782 dynes-sec-cm-5.

At presentation, his respiratory symptoms were attributed to pneumonia and not acute decompensated heart failure (ADHF) or COPD. Initial antibiotics for HCAP and UTI coverage were cefepime and vancomycin. Conventional chest radiographs (CXRs) (Figure 1) on hospital day 0 and the CTA a few days later were not suggestive of pneumonia.

Figure 1. Conventional radiography of the chest showing no acute cardiopulmonary findings but enlarged pulmonary arteries.

An influenza viral panel was negative. Outside blood cultures grew Escherichia coli, while blood, urine, and sputum cultures from our facility were negative. CXRs over the following week were unchanged.

Because of the elevated PAP found prior to admission, Pulmonology was consulted for pulmonary hypertension. TTE on hospital day 3 found a normal RV size, mildly reduced RV systolic function, mildly dilated RA, systolic PAP of 100-105 mmHg, and RA pressure of <5 mmHg. His Wells score for PE was 3.0 to 4.5, suggesting moderate risk (4). The CTA did not identify a PE. In view of a high suspicion for PE, Pulmonology reviewed the CTA with a chest radiologist, who noted that the images were of suboptimal thickness. A VQ scan (Figure 2) was ordered on hospital day 5 and showed multiple bilateral VQ defects consistent with a high probability for PE.

Figure 2. Ventilation-perfusion scan on hospital day 5 showing multiple bilateral ventilation-perfusion defects. The study was consistent with a high probability for pulmonary embolism.

Ultrasound Doppler studies of the lower extremities on hospital day 6 were normal. Repeat TTE on hospital day 5 found a normal sized LV, LV EF of 45-50%, basal inferior wall akinesis, inferolateral wall akinesis, mildly dilated RV, mildly reduced RV systolic function, normal RA size, and PAP of 30-35 mmHg plus RA pressure. The patient was discharged on anticoagulation and antibiotics.


We describe a patient who developed transiently elevated PAP in the setting of sepsis secondary to UTI and E. coli bacteremia, acute or subacute PE, HFpEF, and COPD. At baseline, he likely had PH from COPD and HFpEF out of proportion to PCWP. The increased PAP to 70-80 mmHg 1.5 weeks prior to admission was thought to be due to the hypervolemia observed by outpatient Cardiothoracic Surgery. Recent CABG, long-distance travel, and infection predisposed him to VTE. PE may have caused the dyspnea and syncope experienced on the day of admission. The negative CTA and systolic PAP of 100-105 mmHg on TTE on hospital day 3 may have reflected movement of PE downstream to the subsegmental or smaller arteries and thus inability to be seen on CTA, especially given the suboptimal thickness of the images. Volume status and vascular changes in the setting of recent hypervolemia, possibly due to HF or PH, and concurrent infection may have contributed to this elevated PAP. In light of the presentation of unexplained dyspnea and syncope, Wells score of 3.0 to 4.5, and elevated PAP, suspicion for PE was high. The high pretest probability of PE precipitated obtaining a VQ scan on hospital day 5. The scan supported the presence of bilateral PE, likely in the subsegmental or smaller arteries. PAP of 30-35 mmHg on subsequent TTE suggested resolution of PE.

CTA is the most common study to diagnose acute PE. A number of early studies found CTA to be at least as equivalent in sensitivity and specificity to VQ scan (5-10). Studies using data from the Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) II found the sensitivity and specificity of CTA to be 83% and 96%, respectively, and of VQ scan to be 77.4%. and 97.7%, respectively (11, 12). However, CTA miss up to 20% to 36% of PE in subsegmental and smaller arteries (13-15). A meta-analysis of Wells criteria found sensitivity and specificity of 0.84 and 0.58, respectively, for a cutoff score of less than 2 and 0.60 and 0.80, respectively, for a cutoff score of 4 or less (16).

The degree to which HFpEF, COPD exacerbation, acute or subacute PE, and sepsis affect PAP has had limited investigation. In patients with ADHF, Aronson et al. (17) found PH in 42.6% and pulmonary arterial systolic pressures as high as 70 to 80 mmHg. Sibbald et al. (18) found that 57% of septic patients developed PH and had increases in mean PAP (27 ± 7 mmHg in septic patients found to have PH versus 15 ± 3 mmHg in septic patients found not to have PH, p < 0.01). In patients with chronic bronchitis who went into acute respiratory failure, Abraham et al. (19) found transient increases in mean PAP of approximately 15-20 mmHg (mean PAP 52.2 mmHg at admission and 36.5 mmHg prior to discharge).

The mechanism of PH can be mechanistically complex or intuitively simple. PH involves changes in nitric oxide, endothelin, thromboxane, and prostacyclin pathways, among other possible cellular and biological pathways of pulmonary endothelial dysfunction (20-25). Proinflammatory signals such as during infection affect these pathways (26). Other mechanisms include vascular congestion in HF, physical obstruction from PE, and vasoconstriction in hypoxemia leading to elevated PAP and subsequent PH (27-31). In our patient, there was likely a combination of several mechanisms contributing to his elevated PAP and PH.

Our patient may have been able to tolerate such an acute rise in pulmonary hypertension because of the effects of chronic pulmonary hypertension, although the pathophysiologic mechanisms have not been fully elucidated. Vonk-Noordegraaf et al. (32) described adaptive and maladaptive remodeling in pulmonary hypertension. In adaptive remodeling, the RV size is normal to moderately dilated; the RV mass/volume ratio is higher than normal, as seen in concentric remodeling; and the RVEF is normal to mildly decreased. For our patient, multiple TTE suggested adaptive remodeling, although our cardiologists did not comment on concentric remodeling.

We present the case of a patient with multiple comorbidities including HFpEF and COPD that likely caused the baseline PH seen on previous RHC and the subsequent development of severely increased PAP in the setting of sepsis and acute or subacute PE. His underlying chronic PH may have been protective given that he did not develop acute right HF from the sudden increase in PAP, and survived. The transient elevation in PAP in our patient reiterates that many disease processes can affect PAP, whether directly or indirectly, through simple or complex mechanisms. A CTA to evaluate possible PE should be verified to have the proper technique. A high suspicion for PE in the setting of acute PH despite a negative CTA warrants further investigation.


Dr. Loren Ketai of the Department of Radiology of The University of New Mexico reviewed the images of the computed tomography angiography and ventilation-perfusion scans.

Cecilia Kieu assisted in the preparation of the figures for this manuscript.


  1. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D34-41. [CrossRef] [PubMed]
  2. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009 Mar 31;53(13):1119-26. [CrossRef] [PubMed]
  3. Andersen KH, Iversen M, Kjaergaard J, Mortensen J, Nielsen-Kudsk JE, Bendstrup E, Videbaek R, Carlsen J. Prevalence, predictors, and survival in pulmonary hypertension related to end-stage chronic obstructive pulmonary disease. J Heart Lung Transplant. 2012 Apr;31(4):373-80. [CrossRef] [PubMed]
  4. Wells PS, Anderson DR, Rodger M, Ginsberg JS, Kearon C, Gent M, Turpie AG, Bormanis J, Weitz J, Chamberlain M, Bowie D, Barnes D, Hirsh J. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost. 2000 Mar;83(3):416-20. [PubMed]
  5. Blachere H, Latrabe V, Montaudon M, Valli N, Couffinhal T, Raherisson C, Leccia F, Laurent F. Pulmonary embolism revealed on helical CT angiography: comparison with ventilation-perfusion radionuclide lung scanning. AJR Am J Roentgenol. 2000 Apr;174(4):1041-7. [CrossRef] [PubMed]
  6. Chen SW, Mouratidis B. Comparison of lung scintigraphy and CT angiography in the diagnosis of pulmonary embolism. Australas Radiol. 2002 Mar;46(1):47-51. [CrossRef] [PubMed]
  7. Macdonald WB, Patrikeos AP, Thompson RI, Adler BD, van der Schaaf AA. Diagnosis of pulmonary embolism: ventilation perfusion scintigraphy versus helical computed tomography pulmonary angiography. Australas Radiol. 2005 Feb;49(1):32-8. [CrossRef] [PubMed]
  8. Mayo JR, Remy-Jardin M, Müller NL, Remy J, Worsley DF, Hossein-Foucher C, Kwong JS, Brown MJ. Pulmonary embolism: prospective comparison of spiral CT with ventilation-perfusion scintigraphy. Radiology. 1997 Nov;205(2):447-52. [CrossRef] [PubMed]
  9. McEwan L, Gandhi M, Andersen J, Manthey K. Can CT pulmonary angiography replace ventilation-perfusion scans as a first line investigation for pulmonary emboli? Australas Radiol. 1999 Aug;43(3):311-4. [CrossRef] [PubMed]
  10. Teigen CL, Maus TP, Sheedy PF 2nd, Stanson AW, Johnson CM, Breen JF, McKusick MA. Pulmonary embolism: diagnosis with contrast-enhanced electron-beam CT and comparison with pulmonary angiography. Radiology. 1995 Feb;194(2):313-9. [CrossRef] [PubMed]
  11. Stein PD, Fowler SE, Goodman LR, Gottschalk A, Hales CA, Hull RD, Leeper KV Jr, Popovich J Jr, Quinn DA, Sos TA, Sostman HD, Tapson VF, Wakefield TW, Weg JG, Woodard PK; PIOPED II Investigators. Multidetector computed tomography for acute pulmonary embolism. N Engl J Med. 2006 Jun 1;354(22):2317-27. [CrossRef] [PubMed]
  12. Sostman HD, Stein PD, Gottschalk A, Matta F, Hull R, Goodman L. Acute pulmonary embolism: sensitivity and specificity of ventilation-perfusion scintigraphy in PIOPED II study. Radiology. 2008 Mar;246(3):941-6. [CrossRef] [PubMed]
  13. Goodman LR, Curtin JJ, Mewissen MW, Foley WD, Lipchik RJ, Crain MR, Sagar KB, Collier BD. Detection of pulmonary embolism in patients with unresolved clinical and scintigraphic diagnosis: helical CT versus angiography. AJR Am J Roentgenol. 1995 Jun;164(6):1369-74. [CrossRef] [PubMed]
  14. Oser RF, Zuckerman DA, Gutierrez FR, Brink JA. Anatomic distribution of pulmonary emboli at pulmonary angiography: implications for cross-sectional imaging. Radiology. 1996 Apr;199(1):31-5. [CrossRef] [PubMed]
  15. van Rossum AB, Pattynama PM, Ton ER, Treurniet FE, Arndt JW, van Eck B, Kieft GJ. Pulmonary embolism: validation of spiral CT angiography in 149 patients. Radiology. 1996 Nov;201(2):467-70. [CrossRef] [PubMed]
  16. Lucassen W, Geersing GJ, Erkens PM, Reitsma JB, Moons KG, Büller H, van Weert HC. Clinical decision rules for excluding pulmonary embolism: a meta-analysis. Ann Intern Med. 2011 Oct 4;155(7):448-60. [CrossRef] [PubMed]
  17. Aronson D, Darawsha W, Atamna A, Kaplan M, Makhoul BF, Mutlak D, Lessick J, Carasso S, Reisner S, Agmon Y, Dragu R, Azzam ZS. Pulmonary hypertension, right ventricular function, and clinical outcome in acute decompensated heart failure. J Card Fail. 2013 Oct;19(10):665-71. [CrossRef] [PubMed]
  18. Sibbald WJ, Paterson NA, Holliday RL, Anderson RA, Lobb TR, Duff JH. Pulmonary hypertension in sepsis: measurement by the pulmonary arterial diastolic-pulmonary wedge pressure gradient and the influence of passive and active factors. Chest. 1978 May;73(5):583-91. [CrossRef] [PubMed]
  19. Abraham AS, Cole RB, Green ID, Hedworth-Whitty RB, Clarke SW, Bishop JM. Factors contributing to the reversible pulmonary hypertension of patients with acute respiratory failure studies by serial observations during recovery. Circ Res. 1969 Jan;24(1):51-60. [CrossRef] [PubMed]
  20. Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, Loyd JE. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med. 1992 Jul 9;327(2):70-5. [CrossRef] [PubMed]
  21. Cooper CJ, Jevnikar FW, Walsh T, Dickinson J, Mouhaffel A, Selwyn AP. The influence of basal nitric oxide activity on pulmonary vascular resistance in patients with congestive heart failure. Am J Cardiol. 1998 Sep 1;82(5):609-14. [CrossRef] [PubMed]
  22. Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, Selwyn AP. Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation. 1996 Jan 15;93(2):266-71. [CrossRef] [PubMed]
  23. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214-21. [CrossRef] [PubMed]
  24. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993 Jun 17;328(24):1732-9. [CrossRef] [PubMed]
  25. Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000 Oct 3;102(14):1718-23. [CrossRef] [PubMed]
  26. Toney BM, Fisher AJ, Albrecht M, Lockett AD, Presson RG, Petrache I, Lahm T. Selective endothelin-A receptor blockade attenuates endotoxin-induced pulmonary hypertension and pulmonary vascular dysfunction. Pulm Circ. 2014 Jun;4(2):300-10. [CrossRef] [PubMed]
  27. Barman SA. Potassium channels modulate hypoxic pulmonary vasoconstriction. Am J Physiol. 1998 Jul;275(1 Pt 1):L64-70. [PubMed]
  28. Setaro JF, Cleman MW, Remetz MS.The right ventricle in disorders causing pulmonary venous hypertension. Cardiol Clin. 1992 Feb;10(1):165-83. [PubMed]
  29. Gelband CH, Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation. 1997 Nov 18;96(10):3647-54. [CrossRef] [PubMed]
  30. Post JM, Hume JR, Archer SL, Weir EK. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992 Apr;262(4 Pt 1):C882-90. [PubMed]
  31. Wang J, Juhaszova M, Rubin LJ, Yuan XJ. Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells. J Clin Invest. 1997 Nov 1;100(9):2347-53. [CrossRef] [PubMed]
  32. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D22-33. [CrossRef] [PubMed]

Cite as: Bui PV, Bhatia S, Upson DJ. Pulmonary embolism and pulmonary hypertension in the setting of negative computed tomography. Southwest J Pulm Crit Care. 2016 Mar;12(3):116-25. doi: http://dx.doi.org/10.13175/swjpcc016-16 PDF 


March 2016 Pulmonary Case of the Month

Ramachandra R. Sista, MD

Maxwell L. Smith, MD

 Lewis J. Wesselius, MD


Departments of Pulmonary Medicine and Pathology

Mayo Clinic Arizona

Scottsdale, AZ


Pulmonary Case of the Month CME Information

Members of the Arizona, New Mexico, Colorado and California Thoracic Societies and the Mayo Clinic are able to receive 0.25 AMA PRA Category 1 Credits™ for each case they complete. Completion of an evaluation form is required to receive credit and a link is provided on the last panel of the activity. 

0.25 AMA PRA Category 1 Credit(s)™

Estimated time to complete this activity: 0.25 hours

Lead Author(s): Ramachandra R. Sista, MD. All Faculty, CME Planning Committee Members, and the CME Office Reviewers have disclosed that they do not have any relevant financial relationships with commercial interests that would constitute a conflict of interest concerning this CME activity.

Learning Objectives:
As a result of this activity I will be better able to:

  1. Correctly interpret and identify clinical practices supported by the highest quality available evidence.
  2. Will be better able to establsh the optimal evaluation leading to a correct diagnosis for patients with pulmonary, critical care and sleep disorders.
  3. Will improve the translation of the most current clinical information into the delivery of high quality care for patients.
  4. Will integrate new treatment options in discussing available treatment alternatives for patients with pulmonary, critical care and sleep related disorders.

Learning Format: Case-based, interactive online course, including mandatory assessment questions (number of questions varies by case). Please also read the Technical Requirements.

CME Sponsor: University of Arizona College of Medicine at Banner University Medical Center Tucson

Current Approval Period: January 1, 2015-December 31, 2016

Financial Support Received: None


History of Present Illness

A 74-year-old man was referred for a recently identified right pleural effusion and dyspnea on exertion.  

Past Medical History, Family History and Social History

He has a history of anemia, hypertension, and prostate cancer with a prostatectomy in 2015. He is a life-long nonsmoker and has no occupational exposures. Family history is noncontributory.

Physical Examination

He had diminished breath sounds at the right lung base and a palpable spleen. Otherwise the physical examination was unremarkable.


CBC: hemoglobin  8.5 g/dL, white blood count  7.7 X 109 cells/L,  platelets 357 X 109 cells/L.


A chest X-ray showed a right pleural effusion. Representative images from the CT scan are shown in Figure 1.

Figure 1. Representative images from the CT scan.

Which of the following is the most likely diagnosis? (Click on the correct answer to proceed to the second of five panels)

  1. Empyema
  2. Lung cancer
  3. Tuberculosis
  4. Usual interstitial pneumonia
  5. Valley fever (coccidioidomycosis)

Cite as: Sista RR, Smith ML, Wesselius LJ. March 2016 pulmonary case of the month. Southwest J Pulm Crit Care. 2016;12(3):74-80. doi: http://dx.doi.org/10.13175/swjpcc020-16 PDF


February 2016 Pulmonary Case of the Month

Ashley Garrett, MD

Karen Swanson, DO


Pulmonary Department

Mayo Clinic Arizona

Scottsdale, AZ USA


History of Present Illness

A 77-year-old woman presented with dyspnea on exertion which was progressive for several years.  She remains active but is "winded" with vigorous exercise or altitude. She denied cough, orthopnea , paroxysmal nocturnal dyspnea, chest pain or a prior history of pulmonary infections.  

Past Medical, Social and Family History

She has a history of a seizure disorder and fibromyalgia. She has never smoked or drank and has no history of occupational exposures. There was no family history of respiratory disease.

Physical Examination

Her physical exam was unremarkable.

Current Medications

Topamax and alprazolam.


A chest radiograph was performed (Figure 1).

Figure 1. Initial chest radiography.

Which of the following describe the initial chest x-ray? (Click on the correct answer to proceed to the second of five panels)

  1. The chest x-ray is normal
  2. There is a left lower mass
  3. There is bronchial dilatation and edema
  4. There is hyperinflation
  5. Three is a retrocardiac left lower pneumonia

Cite as: Garrett A, Swanson K. February 2016 pulmonary case of the month. Southwest J Pulm Crit Care. 2016;12(2):34-40. doi: http://dx.doi.org/10.13175/swjpcc012-16 PDF


January 2016 Pulmonary Case of the Month

Kathryn E. Williams, MB

Karen L. Swanson, DO 

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ


History of Present Illness

A 64-year-old man was seen in June 2015 with a nonproductive cough.

Past Medical History, Social History and Family History

He has no significant past medical history. He is a former smoker. Family history is positive for coronary artery disease

Physical Examination

Decreased breath sounds over the right hemithorax with dullness to percussion. Otherwise, the physical exam is unremarkable.


A chest radiograph was performed (Figure 1).

Figure 1. Initial PA chest radiograph.

The chest radiograph shows which of the following? (Click on the correct answer to proceed to the second of five panels)

  1. There is a large mass in the right upper lobe
  2. There is a loculated pleural effusion
  3. There is volume loss in the right upper lobe
  4. 1 and 3
  5. All of the above

Cite as: Williams KE, Swanson KL. January 2016 pulmonary case of the month. Southwest J Pulm Crit Care. 2016;12(1):1-5. doi: http://dx.doi.org/10.13175/swjpcc158-15 PDF 


Interval Development of Multiple Sub-Segmental Pulmonary Embolism in Mycoplasma Pneumoniae Bronchiolitis and Pneumonia

Peter V. Bui1

Sapna Bhatia2

Ali I. Saeed2

1Department of Internal Medicine

2Division of Pulmonary, Critical Care, and Sleep Medicine

The University of New Mexico

Albuquerque, NM, USA



Introduction: Cases of pulmonary embolism (PE) concurrent with Mycoplasma pneumoniae infection are rare in the medical literature. We describe a patient with M. pneumoniae bronchiolitis and pneumonia who developed multiple right-sided, sub-segmental PE.

Case Description: A 54-year-old man presented following one week of respiratory and constitutional symptoms. He was admitted for respiratory distress and started on ceftriaxone, azithromycin, and oseltamivir. Because of a lack of clinical improvement, antibiotics were escalated to vancomycin and piperacillin-tazobactam. M. pneumoniae IgM and IgG serologies returned positive, and antibiotics were narrowed to azithromycin, with clinical improvement and gradual decrease in supplemental oxygen requirement. One week into the hospitalization, the patient abruptly developed an increased oxygen requirement. Computed tomography angiography (CTA) of the chest found stable M. pneumoniae bronchiolitis and pneumonia and the interval development of multiple right-sided, sub-segmental PE. He was treated with unfractionated and then low-molecular-weight heparin as a bridge to warfarin, azithromycin, and a prednisone taper. In the outpatient setting, repeat CTA revealed resolution of M. pneumoniae infection and PE. 

Discussion: Although the mechanism and association are unclear, other case reports have proposed that M. pneumoniae infection promotes hypercoagulability or a prothrombotic state, predisposing patients to thromboembolism. In a patient with M. pneumoniae infection who develops sudden respiratory distress or failure despite appropriate treatment, clinicians should have a high suspicion for PE, and a CTA should be considered as part of further evaluation.


Mycoplasma pneumoniae is one of thirteen Mycoplasma species isolated from humans and less commonly causes lower respiratory tract infections, of which atypical pneumonia occurs at higher rates (1). These lower respiratory tract infections have been reported to present similarly to other disease processes such as asthma and pulmonary embolism (PE) (2, 3). M. pneumoniae pneumonia typically has a benign course with low mortality. A study by von Baum et al. found a mortality of 0.7% in patients with M. pneumoniae pneumonia, with the deaths occurring in hospitalized patients (4). Despite this low mortality, rare complications may contribute to morbidity and mortality, although to what degree, if any, is unclear. A case report in the medical literature describes a PE and a hypercoagulable state associated with M. pneumoniae pneumonia in an adult during the peri-infectious period (5). We present a case with radiographic evidence of the interval development of multiple segmental PE in a patient with M. pneumoniae bronchiolitis and pneumonia.

Case Description

A 54-year-old man with a 15-pack-year smoking history, positive purified protein derivative treated with isoniazid, occupational exposures including asbestos and dust, and a current history of ethanol abuse presented to the emergency department with a one-week history of a productive cough with yellow sputum, weakness, shortness of breath, and dyspnea on exertion. He also noticed diffuse papular cutaneous lesions over his back.

In the emergency department, he was hypoxic with a need for supplemental oxygen. Cardiopulmonary examination was unremarkable. Initial laboratory studies including complete blood count, chemistry panel, and hepatic function panel were notable for a leukocytosis of 13.6 k/μL with a neutrophilia of 83%, aspartate transaminase of 108 units/L, alanine transaminase of 152 units/L, alkaline phosphatase of 175 units/L, and total bilirubin of 1.5 mg/dL, and creatine kinase of 563 units/L. Conventional chest radiograph (Figure 1) showed a left lower lobe infiltrate.

Figure 1. Conventional chest radiograph on day zero of the hospitalization. The images show a left lower lobe infiltrate.

The patient was admitted to the hospital and started on ceftriaxone and azithromycin for community-acquired pneumonia as well as oseltamivir over concerns for influenza.

During the initial hospitalization, the patient required supplemental oxygen for hypoxia with a rapid increase in fractional inspired oxygen (FiO2) to maintain oxygen saturation above 90%. Because of a lack of clinical improvement, antibiotics were broadened to include vancomycin and piperacillin-tazobactam. Since he continued to require a FiO2 of 60% on day four of the hospitalization, additional workup for atypical bacterial, viral, and fungal pathogens were performed after consultation with pulmonology. Acid-fast bacillus cultures and stains were negative. Sputum cultures were not obtained. An arterial blood gas prior to evaluation by Pulmonology found a pH of 7.42, partial pressure of carbon dioxide of 38 mmHg, partial pressure of oxygen of 86 mmHg, HCO3 of 24 mmol/L, and FiO2 of 95%. Computed tomography (CT) of the chest (Figure 2) showed extensive bronchiolitis with focal areas of consolidation involving bilateral lower lobes.

Figure 2. Computed tomography of the chest on day four of the hospitalization. The image shows an extensive bronchiolitis with focal areas of consolidation involving bilateral lower lobes.

Oseltamivir was discontinued after the respiratory viral panel returned negative. Broad spectrum antibiotics were narrowed to azithromycin after M. pneumoniae IgM and IgG serologies returned positive. His oxygen requirement gradually improved over the next two days, and he was transitioned to nasal cannula.

On day seven of his hospitalization, the patient suddenly developed moderate respiratory distress with an increase in oxygen requirement. CT angiography (CTA) of the chest (Figure 3) done at this juncture showed unchanged parenchymal findings with interval development of multiple sub-segmental pulmonary emboli in the right lung.

Figure 3. Computed tomography angiography of the chest on day five of the hospitalization. The images show unchanged parenchymal findings with interval development of multiple sub-segmental pulmonary emboli in the right lung (see white arrows in Figure 3A).

Doppler ultrasound found no evidence of deep venous thrombosis (DVT) in both lower extremities. He was subsequently started on therapeutic anticoagulation with unfractionated heparin and then low-molecular-weight heparin as a bridge to warfarin. The patient subsequently improved on a 14-day course of azithromycin 500 mg orally once daily and 3-month tapered course of prednisone 60 mg orally once daily for M. pneumoniae infection, a 3-month course of warfarin for the PE, and supplemental oxygen. During follow-up in the outpatient setting, CTA of the chest showed the infection and PE to have resolved, and all therapies related to the infection and PE were discontinued.


We herein describe a case of M. pneumoniae bronchiolitis and pneumonia complicated by right-sided PE. The reported occurrences of venous thromboembolism (VTE) during M. pneumoniae infection are limited to case reports. In our review of the literature, we found one case of M. pneumoniae infection associated with PE in the adult population. Ascer et al. (5) presented the case of a 28-year-old male with right-sided pneumonia and right-sided PE who was found to have antiphospholipid antibodies. For the PE, this patient was successfully treated with recombinant tissue-type and plasminogen activator and heparin and was discharged with hydroxychloroquine sulphate, aspirin, and warfarin. However, Ascer did not publish additional follow up for this seemingly prothrombotic state. In a case without PE, Senda et al. (6) reported on a 21-year-old patient with a left middle cerebral artery embolus and DVT in bilateral femoral veins in the setting of a M. pneumoniae infection. This patient had a transient increase in prothrombin time, partial thromboplastin time, fibrin/fibrinogen degradation products, thrombin-antithrombin III-complex, antiphospholipid antibodies, and IgM anticardiolipin antibodies and decrease in protein C activity.

The pediatric medical literature has additional case reports linking M. pneumoniae to PE. Brown et al. (7) described a 6-year-old male child with M. pneumoniae pneumonia, right-sided ileofemoral thrombosis, and right-sided PE found to have anticardiolipin IgG and IgM antibodies, lupus anticoagulant, and acquired activated protein C resistance. This prothrombotic state subsequently resolved after treatment of the infection with antibiotics and the PE with unfractionated heparin and then dalteparin. In another case report, during workup for a 13-year-old male child with right-sided PE in the setting of a left lower lobe M. pneumoniae pneumonia, Graw-Panzer et al. (8) found lupus anticoagulant, anticardiolipin IgG and IgM antibodies, and an underlying protein S deficiency. The transient prothrombotic markers returned to normal levels during subsequent follow-up for his acute illness.

M. pneumoniae pulmonary infections have been reported in the pediatric medical literature to be associated with an underlying hypercoagulability. Creagh et al. (9) reported on a left femoral vein thrombosis in a 10-year-old female with M. pneumoniae pneumonia who was found to have type I familial antithrombin III deficiency. In another case report of two children describing splenic infarcts associated with M. pneumoniae pneumonia, Witmer et al. (10) found elevated D-dimer, lupus anticoagulant, and elevated anticardiolipin and β2-glycoprotein antibodies that resolved following successful treatment of the infection with antibiotics and a three-month course of anticoagulation and, in one patient, an additional course of aspirin (10). No specific etiology was found for the infarctions, but Witmer et al. attributed the infarctions to possible thrombosis. Other case reports in the pediatric literature that found antiphospholipid antibodies include a patient with cardiac thrombus and internal carotid artery occlusion (11, 12). However, in their report of right popliteal artery thrombosis in a 5-year-old male child with M. pneumoniae pneumonia and right popliteal artery thrombosis, Joo et al. (13) did not find abnormalities in their limited hypercoagulability workup.

Our lack of hypercoagulability workup limits comparison with the available medical literature. We did not perform a hypercoagulability workup because the patient did not meet any Wells criteria and did not have a family history of hypercoagulability. Based on the available case reports, the underlying pathophysiology can be inferred to be related to a transient formation of antiphospholipid antibodies during a M. pneumoniae infection. Additionally, the thromboembolism can be expected to occur within a short period of time following the onset of symptoms. The rate that hypercoagulability occurs in infected patients and the practical clinical relevance of such a prothrombotic state without or without an inherited or congenital deficiency are unknown at this time. These questions would benefit from further investigation.

An alternative interpretation is a preexisting hypercoagulability may predispose patients to M. pneumoniae infection, which can exacerbate the hypercoagulability, further increasing the risk of VTE. This interpretation may be relevant for the patients of Graw-Panzer et al. (8) and Creagh et al. (9) who had underlying hypercoagulable conditions and subsequently suffered M. pneumoniae infection and then developed VTE. The Worcester Venous Thromboembolism study found an association between infection and VTE, and Rosendaal’s review of the literature found an association between hypercoagulability and increased risk of thrombosis (14-16). With the available case reports and epidemiological studies, this alternative interpretation has not been elucidated.

In this report, we described the interval development of PE in a patient with M. pnuemoniae bronchiolitis and pneumonia. The mechanism for the hypercoagulability during M. pneumoniae infection is unclear. A CTA of the chest should be obtained if a patient with M. pneumonia infection fails to show clinical improvement or suddenly develops clinical worsening of his or her respiratory status, so as to exclude PE. However, clinicians should take into account that Mycoplasma pneumonia may present with the symptoms of PE (3).


We would like to acknowledge Cecelia Kieu for assisting in the preparation of the figures for this manuscript.


  1. Cha SI, Shin KM, Kim M, Yoon WK, Lee SY, Kim CH, Park JY, Jung TH. Mycoplasma pneumoniae bronchiolitis in adults: Clinicoradiologic features and clinical course. Scand J Infect Dis. 2009;41(6-7):515-9. [CrossRef] [PubMed]
  2. Vasudevan VP, Suryanarayanan M, Shahzad S, Megjhani M. Mycoplasma pneumonia bronchiolitis mimicking asthma in an adult. Respir Care. 2012;57(11):1974-6. [CrossRef] [PubMed]
  3. Simmons BP, Aber RC. Mycoplasma pneumoniae pneumonia. Symptoms mimicking pulmonary embolism with infarction. JAMA. 1979;241(12):1268-9. [CrossRef] [PubMed]
  4. von Baum H, Welte T, Marre R, Suttorp N, Luck C, Ewig S. Mycoplasma pneumoniae pneumonia revisited within the German Competence Network for Community-acquired pneumonia (CAPNETZ). BMC Infect Dis. 2009;9;62. [CrossRef] [PubMed]
  5. Ascer E, Marques M, Gidlund M. M pneumonia infection, pulmonary thromboembolism and antiphospholipid antibodies. BMJ Case Rep. 2011;2011. [CrossRef] [PubMed]
  6. Senda J, Ito M, Atsuta N, Watanabe H, Hattori N, Kawai H, Sobue g. Paradoxical brain embolism induced by Mycoplasma pneumoniae infection with deep venous thrombosis. Intern Med. 2010;49(18):2003-5. [CrossRef] [PubMed]
  7. Brown SM, Padley S, Bush A, Cummins D, Davidson S, Buchdahl R. Mycoplasma pneumonia and pulmonary embolism in a child due to acquired prothrombotic factors. Pediatr Pulmonolo. 2008;43(2):200-202. [CrossRef] [PubMed]
  8. Graw-Panzer KD, Verma S, Rao S, Miller ST, Lee H. Venous thrombosis and pulmonary embolism in a child with pneumonia due to Mycoplasma pneumoniae. J Natl Med Assoc. 2009;101(9):956-8. [PubMed]
  9. Creagh MD, Roberts IF, Clark DJ, Preston FE. Familial antithrombin III deficiency and Mycoplasma pneumoniae pneumonia. J Clin Pathol. 1991;44:870-1. [CrossRef] [PubMed]
  10. Witmer CM, Steenhoff AP, Shah SS, Raffini LJ. Mycoplasma pneumoniae, splenic infarct, and transient antiphospholipid antibodies: a new association? Pediatrics. 2007;119:292–5. [CrossRef] [PubMed]
  11. Bakshi M, Khemani C, Vishwanathan V, Anand RK. Mycoplasma pneumonia with antiphospholipid antibodies and a cardiac thrombus. Lupus 2006;15:105–6. [CrossRef] [PubMed]
  12. Tanir G, Aydemir C, Yilmaz D, Tuygun N. Internal carotid artery occlusion associated with Mycoplasma pneumoniae infection in a child. Turk J Pediatr. 2006;48(2):166-71. [PubMed]
  13. Joo CU, Kim JS, Han YM. Mycoplasma pneumoniae induced popliteal artery thrombosis treated with urokinase. Postgrad Med J. 2001;77:723–724. [CrossRef] [PubMed]
  14. Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet. 1999;353(9159):1167-73. [PubMed]
  15. Spencer FA, Emery C, Joffe SW, Pacifico L, Lessard D, Reed G, Gore JM, Goldberg RJ. Incidence rates, clinical profile, and outcomes of patients with venous thromboembolism. The Worcester VTE study. J Thromb Thrombolysis. 2009;28(4):401-9. [CrossRef] [PubMed]
  16. Spencer FA, Emery C, Lessard D, Anderson F, Emani S, Aragam J, Becker RC, Goldberg RJ. The Worcester Venous Thromboembolism study: a population-based study of the clinical epidemiology of venous thromboembolism. J Gen Intern Med. 2006;21(7):722-7. [CrossRef] [PubMed]

Cite as: Bui PV, Bhatia S, Saeed AI. Interval development of multiple sub-segmental pulmonary embolism in Mycoplasma pneumoniae bronchiolitis and pneumonia. Southwest J Pulm Crit Care. 2015;11(6):277-83. doi: http://dx.doi.org/10.13175/swjpcc152-15 PDF